NG GROUP 2018 Paul C. Hackley Jolanta Kus

ICCP CONFOCAL LASER SCANNING MICROSCOPY (CLSM) WORKING GROUP 2018

WHY USE CLSM ON SEDIMENTARY ORGANIC MATTER?

Many applications

- Technique is broadly underutilized
- **High resolution (~200 nm)**
- **2-D** and **3-D** imaging
- **3-D** reconstructions, video
- **Non-destructive**
- Fluorescence spectroscopy
- Useful for organic petrology!

CLSM WG UPDATE 2018

Kus, 2015

Working Group approved in Potsdam 2015

Note in ICCP News 63, 2015

Presentation at GSA, Baltimore Nov 2015

User survey sent Feb 2016

WG presentations Houston 2016, Bucharest 2017

Webpage established October 2017 (thanks Stavros)

10.7 Jun Kus. 2015

ACTIVITIES 2018

- Kimmeridge sample selected for WG study in late 2017
- Sample distributed April 2018 to 13 participants, with no instructions
- Results received from 2 ¹/₂ participants up to September 2018
- Outline from here: sample information, supporting work (ion milling), CLSM WG results up to now

Adagaari - 100 Wald

CLSM WG SAMPLE: KIMMERIDGE CLAY

Kimmeridge Clay: KC-1

- Kimmeridge Blackstone
- BRo: 0.29%
- **VRo: 0.42%**
- Tmax: 409°C
- **TOC: 44.1 wt.%**
- HI: 737 mg HC/g TOC
- Fluorescent AOM, minor solid bitumen, vitrinite/inertinite, micrinite

Other data

FLA NALNI - A ICCP

10.

0.36 0.34

0.42

0.33

0.36

0.39 0.40

Post-ion 0.39 0.40 0.36 0.37 0.37 0.4 0.39 0.43 0.39 0.36 0.42 0.38 0.36 0.32 0.36 0.36 0.36 0.36 0.36 0.37 0.36 0.39 0.37 0.38 0.41 0.36 0.36 0.37 0.37 0.40 0.37 0.37 0.38 0.37 0.37 0.41 $\begin{array}{c} 0.36 & 0.37 & 0.41 \\ 0.35 & 0.36 & 0.38 & 0.41 \\ 0.35 & 0.36 & 0.38 & 0.41 \\ 0.37 & 0.39 & 0.38 & 0.38 \\ 0.37 & 0.39 & 0.38 & 0.33 \\ 0.39 & 0.37 & 0.39 & 0.39 \\ 0.38 & 0.37 & 0.39 & 0.39 \\ 0.38 & 0.39 & 0.39 & 0.39 \\ 0.38 & 0.39 & 0.39 & 0.39 \\ 0.38 & 0.39 & 0.39 & 0.39 \\ 0.38 & 0.39 & 0.39 & 0.39 \\ 0.38 & 0.39 & 0.39 & 0.39 \\ 0.38 & 0.39 & 0.39 & 0.39 \\ 0.38 & 0.39 & 0.39 & 0.39 \\ 0.38 & 0.39 & 0.39 & 0.39 \\ 0.38 & 0.39 & 0.39 & 0.39 \\ 0.38 & 0.39 & 0.39 & 0.39 \\ 0.38 & 0.39 & 0.39 & 0.39 \\ 0.38 & 0.38 & 0.39 & 0.39 \\ 0.38 & 0.38 & 0.39 & 0.39 \\ 0.38 & 0.38 & 0.39 & 0.39 \\ 0.38 & 0.38 & 0.39 & 0.39 \\ 0.38 & 0.38 & 0.39 & 0.39 \\ 0.38 & 0.38 & 0.39 & 0.39 \\ 0.38 & 0.38 & 0.39 & 0.39 \\ 0.38 & 0.38 & 0.39 & 0.39 \\ 0.38 & 0.38 & 0.39 & 0.39 \\ 0.38 & 0.38 & 0.38 & 0.39 \\ 0.38 & 0.38 & 0.38 & 0.38 \\ 0.$ 0.36 0.44 0.37 0.44 _ 0.40 0.45 0.37 0.39 0.38 0.37 0.38 0.33 0.39 0.38 0.39 0.40 0.40 0.34 0.38 0.38 0.37 0.41 0.39 0.37 0.39 0.41 0.45 -0.40 |0.38 0.39 0.42 0.38 0.36 0.37 0.37 0.36

20µm.

Post-ion milling

Post-ion milling

Pre-ion milling

FileName 171030015.xqdx

Comm. 3

	Unit	Whole	1CH	2CH	ЗСН
Sa	nm	6.388E+01	9.687E+00	4.530E+00	1.477E+01
Sz/Smax	nm	6.470E+02	4.736E+01	2.188E+01	6.587E+01
Sp	nm	3.928E+02	2.027E+01	1.121E+01	4.025E+01
Sv	nm	2.542E+02	2.709E+01	1.067E+01	2.562E+01
Sq/RMS	nm	8.154E+01	1.100E+01	5.350E+00	1.782E+01
Δa		1.357E-01	9.670E-02	3.983E-02	7.741E-02
SzJIS/Sz	nm	2.946E+02	4.736E+01	2.188E+01	6.587E+01
	nm²	2.565E+09	6.627E+06	2.823E+06	4.707E+06
Sratio		1.001E+00	1.000E+00	1.000E+00	1.001E+00
λc	nm	D.C	D.C	D.C	D.C

	Unit	Whole	1CH	2CH	3CH
a	nm	1.486E+02	6.301E+00	2.785E+00	4.894E+00
Sz/Smax	nm	1.592E+03	6.182E+01	1.589E+01	2.883E+01
βp	nm	1.101E+03	2.685E+01	8.356E+00	1.558E+01
δv	nm	4.911E+02	3.498E+01	7.530E+00	1.324E+01
a/RMS	nm	1.888E+0	8.298E+00	3 289E±00	6 316E+00
			CIESCE 100	5.205E 100	0.0102100
la		8.481E+00	2.156E-01	3.680E-02	6.124E-02
la SzJIS/Sz	° nm	8.481E+00 5.931E+02	2.156E-01 3.384E+01	3.680E-02 1.589E+01	6.124E-02 2.883E+01
Ja SzJIS/Sz	° nm nm²	8.481E+00 5.931E+02 2.547E+09	2.156E-01 3.384E+01 3.538E+06	3.680E-02 1.589E+01 2.425E+06	6.124E-02 2.883E+01 2.771E+06
Aa SzJIS/Sz Sratio	° nm nm²	8.481E+00 5.931E+02 2.547E+09 1.012E+00	2.156E-01 3.384E+01 3.538E+06 1.022E+00	3.680E-02 1.589E+01 2.425E+06 1.000E+00	6.124E-02 2.883E+01 2.771E+06 1.000E+00
Sz JIS/Sz Gratio	° nm nm² nm	8.481E+00 5.931E+02 2.547E+09 1.012E+00 D.C	2.156E-01 3.384E+01 3.538E+06 1.022E+00 D.C	3.680E-02 1.589E+01 2.425E+06 1.000E+00 D.C	6.124E-02 2.883E+01 2.771E+06 1.000E+00 D.C

THE FOR COAL TH

-ileName	171030021.xqdx
Comm. 1	Kimmeridge area 1
Comm. 2	post-ion mill
Comm. 3	

Avg. RMS 5.97 nm

PRE-ION MILLING

nm

150

100

50

nm

900

800

700

600 -

500

300

200

100

Sq

Sp

Sv

Sz

Sa

ISO 25178

Height Parameters			
Sq	1.95	nm	Root-mean-square height
Ssk	-0.635		Skewness
Sku	4.40		Kurtosis
Sp	5.81	nm	Maximumpeak height
Sv	10.2	nm	Maximumpitheight
Sz	16.0	nm	Maximum height
Sa	1.51	nm	Arithmeticmeanheight

nm

900

800 -

700 -

600 -

500 -

400 -

300 -

200 -

100 -

0 -

400

200

600

800 nm

Sz

Sa

13.6 nm Maximum height

1.40 nm Arithmeticmeanheight

THE FOR COAL

Courtesy Keysight Tech.

POST-ION MILLING

ISO 25178

Height Parameters

Sq	29.8	nm	Root-mean-square height
Ssk	-0.213		Skewness
Sku	2.64		Kurtosis
Sp	118	nm	Maximumpeak height
Sv	110	nm	Maximumpitheight
Sz	228	nm	Maximum height
Sa	24.2	nm	Arithmeticmeanheight

5.5

4.0

3.0

2.5

1.5 1.0

0.5

0.0

μm

1.3 1.2

- 1.1

1.0

0.9

0.8

0.7

- 0.6

0.5

0.4

0.3

0.2

0.1

0.0

	ISO 25178			
	Height Parameters			
	Sq	23.3	nm	Root-mean-square height
	Ssk	-1.05		Skewness
	Sku	5.56		Kurtosis
	Sp	68.6	nm	Maximumpeak height
	Sv	109	nm	Maximumpitheight
	Sz	178	nm	Maximum height
	٢	17.1	nm	Arithmeticmeanheight

Courtesy Keysight Tech.

Not on correlative areas – exposure of nano-sulfides causes increase in RMS

Contributors to-date:

- Paul Hackley (1/2 result)
- Jolanta Kus, BGR
- Andy Czaja, Univ. Cincinnati
- Isabel Suarez-Ruiz (hint of result), INCAR

Kimmeridge Clay: KC-1

- Image stack (128)
- **141** x **141** x **11** μm
- 405 nm diode laser
- 470 nm HyD detection
- 63x oil, 1.4NA
- Image shows highest intensity response in volume

Bituminite with halos

Framboidal pyrite

Coccoliths

25

μm

Bituminite, pitted appearance, due to pyrite

Bituminite with halos

Framboidal pyrite

25

μm

0

Cocoliths, replacement with framboidal pyrite (red arrows)

ICCP

Framboidal pyrite (blue colour)

25

μm

0

Botryococcus: Branch with four openings (red arrows)

Framboidal pyrite (blue colour)

The same CLSMimage as previous slide but at a depth of 2-3 µm below surface of the pellet

Botryococcus: Branch with four openings (red arrows)

Framboidal pyrite (blue colour)

10µm

10µm

Pyrite fluorescence imaged with 458 nm excitation, 480-495 bandpass

10µm

CLSM WG 2018 SUMMARY

Summary:

- Kimmeridge Clay sample selected
- Distributed to 13 persons
- Results received from 2.5 persons
- Ion milling causes Ro increase to AOM
- AFM suggests this is due to flattening
- 3-D rendering from image stacks
- Pyrite fluorescence(?)
- Botryococcus(?)
- Halos around pyrite framboids(?)
- Awaiting results from others

