Atlas of Fly Ash Occurrences

Identification and Petrographic Classification of Fly Ash Components Working Group, Commission III - ICCP

Edited by Isabel Suárez-Ruiz and Bruno Valentim

ISBN: 978-84-608-1416-0

International Committee for Coal and Organic Petrology - ICCP

Isabel Suárez-Ruiz · Bruno Valentim Editors

Atlas of Fly Ash Occurrences

A tribute to past and future ICCP members

International Committee for Coal and Organic Petrology

PgUp ┥ ▶ PgDn

2

© 2015 I.Suárez-Ruiz; B. Valentim; Á. G. Borrego; A. Bouzinos; D. Flores; S. Kalaitzidis; M.A. Love Malinconico; M. Marques; M. Misz-Kenan; G. Predeanu; J.R. Montes; S. Rodrigues; G. Savalas; N. Wagner.

International Committee for Coal and Organic Petrology- ICCP (www.iccop.org)

Consejo Superior de Investigaciones Científicas (CSIC. Spain). www.csic.es

Porto University – Faculty of Sciences (Portugal). www.up.pt

ISBN: 978-84-608-1416-0

CC Symbol: this Atlas is licensed by Creative Commons (http://www.creativecommons.org/) for Open Access. Does not permit commercial use of the original work, and any derivatives from it must use a similar licence.

This altas was sponsored by:

Integrated Actions. Spain-Portugal. Reference Project: Ref: PT2009-0122. Ministerio de Ciencia e Innovacion. Spanish Government. Spain.

Programa de Acções Universitárias Integradas Luso-Espanholas 2010/2011: Ref. E-65/10. Conselho de Reitores das Universidades Portuguesas – CRUP. Portugal.

Main Menu of Contents

- <u>ATLAS</u>

- <u>Tribute</u>. <u>Licence and sponsors</u>. <u>Contributors</u>.
- Acknowlegdments
- Introduction
- Aim of the Atlas
- Provenance of fly ash
- <u>Samples, preparation and photomicrographs</u>
- Selection of fly ash photomicrographs
- Petrographic classification of fly ash (established in 2012, 64th ICCP Meeting in China)
- Description of the optical properties of the fly ash components, examples
- Organization of the photomicrographs
- Bibliographic references
- Your exercise
- Referencing this ATLAS

Contributors

Isabel Suárez-Ruiz (Convener), Bruno Valentim (Co-convener), Ángeles G. Borrego, Antonis Bouzinos, Deolinda Flores, Stavros Kalaitzidis, MaryAnn Love Malinconico, Manuela Marques, Magdalena Misz-Kenan, Georgeta Predeanu, José Ramon Montes, Sandra Rodrigues, Giorgios Savalas, Nikki Wagner.

Acknowledgments

Programa de Acções Integradas Luso-Espanholas 2010/2011, Conselho de Reitores da Universidade do Porto (CRUP), Acção Integrada Luso-Espanhola E65-10.

Subprograma de Acciones Integradas. Ministério de Ciencia y Innovación, PT2009-0122.

Faculdade de Ciências da Universidade do Porto (Portugal).

Instituto Nacional del Carbón (INCAR-CSIC, Oviedo, España).

The conveners of the Fly Ash Working Group also thank the participants who gently participated in the WG Session exercise at the 2011 ICCP Meeting held at Porto (Portugal).

Introduction

The images included in this ATLAS were compiled since 2006 as a result of the work carried out by the Fly Ash Working Group (Commission III) of the International Committee for Coal and Organic Petrology – ICCP on Fly Ash. This working group was convened by Isabel Suárez-Ruiz and Bruno Valentim (www.iccop.org), and aimed at classifying sections of particles (not the all particle).

Fly ash is defined as one of the residues produced during combustion of coal and other feed fuels, and comprises the fine particles that rise with the flue gases.

Fly Ash is generally captured by cyclones, electrostatic precipitators or baghouses before the flue gases reach the chimneys of coal- or biomass-fired power plants and other industrial furnaces.

Depending upon the feed fuels being burned and the combustion conditions, the final composition of the fly ash vary considerably. In general, fly ash is mainly made up of a predominant inorganic fraction and a minor organic fraction (unburned carbons- or fly ash carbons).

Aim of the Atlas

Taking into account the varied composition of the Fly Ash, the main purpose of this ATLAS is to help to identify and classify the components that can be found in Fly Ash from coal combustion, cocombustion, and biomass combustion processes, developed in different operating conditions pulverized coal combustion (PCC), fluidized bed combustion (FBC), and others.

Provenance of fly ash

The provenance of Fly Ash included here is diverse.

The fly ash derive from coal and coal blends combustion covering all the coal rank scale (low, medium and high rank according to ISO 11760:2005), biomass combustion and co-combustion of coal and biomass, coal and pet coke, among others, in conditions of Pulverized Coal Combustion (PCC), Fluidised Bed Combustion (FBC), both from European Power Plants, specific conditions of stoker boilers and heating boilers.

Pulverized Coal-fired Power Plant in Velilla (Spain).

FBC in ENCE, Navia (Spain) Biomass Power Plant.

Samples, preparation and photomicrographs

Images of Fly Ash Components were taken at the Organic Petrography Laboratory of the INCAR – CSIC in Oviedo (Spain).

For that representative samples of the different Fly Ash were taken and prepared for petrographic analysis following the ISO 7404/2 (2009) Norm.

The petrographic pellets were visually analysed using a Zeiss Axioplan Microscope, and oil immersion (×50 objectives).

The images were taken in two different positions after rotating the microscope stage, with a Leica Camera coupled to the microscope, in incident and polarized light, and with an inserted retarder plate of 1λ .

Selection of fly ash photomicrographs

The images compiled in this ATLAS are those that were classified by the participants in the "Identification and Petrographic Classification of Components in Fly Ash Working Group".

Three round robins were carried out since 2006 on petrographic classification of more than 600 photomicrographs of different fly ash components.

Those images for which more than 80% of the participants in the WG agreed in their identification and petrographic classification were selected and included in this ATLAS.

Zeiss Axioplan Microscope and digital Leica Camera at the INCAR-CSIC, Spain.

PgUp ┥ ▶ PgDn 11

Petrographic classification of Fly Ash (established in 2012)

	Level #1	Level # 2	Level # 3	Level #4	Level # 5	Level #6
	Nature	Character	Structure / Morphology	Optical texture	Origin	Type of Particle
ASH COMPONENTS	Organic Fraction Fly Ash Carbons	Fused Unfused	Dense / Massive Porous / Vesiculate Dense / Massive Porous / Vesiculate	Isotropic Anisotropic Isotropic Anisotropic Isotropic Anisotropic Isotropic Anisotropic	Coal, Biomass, Pet coke, Other	Apply the ICCP Char Classification
FLV	Inorganic Fraction	Composition Metallic / Non-Metallic	Apply the ICCP Char Classification			

Description of the Optical properties of Fly Ash Components, examples

Fly Ash Components are petrographically classified in 6 levels of which:

• 3 levels are addressed to particle field identification; and,

Attention: Long side of the pictures: 200 microns

To all levels explanation

Description of the Classification Levels

(note: this is "All levels slide")

Levels of Fly Ash Components classification:

Level # 1 - Nature of Fly Ash Components: Organic, Inorganic

Level # 2 - Optical Character of the Fly Ash Carbons

Level # 3 - Optical Structure / Morphology of the Fly Ash Carbons

Level # 4 - Optical Texture of the Fly Ash Carbons

Level # 5 - Origin / Provenance of the Fly Ash Carbons

Level # 6 - Type of Particle (type of Fly Ash Component): Apply the ICCP Char Classification

Inorganic components can be classified according to their nature and composition.

Description of the Classification Levels

Level # 1 - Nature of Fly Ash Components:

i) - Organic Components: Fly Ash Carbons (Unburned Carbons),
 ii)- Inorganic Components

This level of classification of Fly Ash Components is addressed to the whole particle

Examples of Organic Components

Examples of Inorganic Components

Examples of Organic Components

Level #1: addressed to the whole particle

Long side of the pictures: 200 microns

Examples of Inorganic Components

Level # 1: addressed to the whole particle

Long side of the pictures: 200 microns

Description of the Classification Levels

Level # 2 - Optical Character of the Fly Ash Carbons:

i) – Fused ii)- Unfused

This level of classification of Fly Ash Components is addressed to the particle field identification.

Definitions:

Fused character: section/field of a particle with rounded or sub-rounded morphology, with evidences of swelling and /or caking, and without sharp edges. The coal petrographers "pyrolytic carbon" also has a fused character since it results from the hydrocarbons decomposition and further condensation at particle edges. Pyrolytic carbon is extremely anisotropic, with curved layers and sweeping anisotropy.

Unfused character: section/field of a particle without any of the described characteristics. Particle section flat, sharp edges, they can show cell structures (original or newly-formed) or structures type "finger gloves".

Examples of Fused and Unfused character

Examples: Optical Character

Particle field identification \longrightarrow

Level # 2: addressed to the particle surface identification

Long side of the pictures: 200 microns

(CLICK HERE FOR MORE EXAMPLES)

To previous slide

PgUp ┥ 🕨

า 19

Examples: Optical Character

Particle field identification

Long side of the pictures: 200 microns

(CLICK HERE FOR PYROLYTIC CARBON EXAMPLES)

Examples: Optical Character: Fused

Particle field identification

Long side of the pictures: 200 microns

To optical character description

To "All levels" slide

21

Description of the Classification Levels

Level # 3 - Optical Structure of the Fly Ash Carbons:

i) – Dense / Massiveii)- Porous / Vesiculated

This level of classification of Fly Ash Components is addressed to the particle field identification.

Definitions: **Dense / Massive structure**: section of a particle without any porosity or devolatilization pores.

Porous / Vesiculated structure: section of a particle with pores of thermal devolatilization (distorted pores, coalescent pores). Surface particle section (not transformed) with original porosity (cell/cavities structure).

Examples of Dense / Massive and Porous / Vesiculated structure

Examples: Optical Structure

Particle field identification

 \rightarrow

Level # 3: addressed to the particle surface identification

Long side of the pictures: 200 microns

(CLICK HERE FOR MORE EXAMPLES)

To optical structure description

Examples: Optical Structure

Long side of the pictures: 200 microns

To optical structure description

To "All levels" slide

PgDn 24

Description of the Classification Levels

Level # 4 - Optical Texture of the Fly Ash Carbons: i) Isotropic; ii) Anisotropic.

This level of classification of Fly Ash Components is addressed to the particle field identification.

Definitions:

Isotropic texture: section of a particle that does not modify its color or color intensity when it is rotated 360°.

Anisotropic texture: section of a particle that modifies its color or color intensity when it is rotated 360°.

Examples of Isotropic Textures

Examples of Anisotropic Textures

Level # 4: addressed to the particle surface identification

To "All levels" slide

Level # 4: addressed to the particle surface identification

To "All levels" slide

Description of the Classification Levels

Level # 5 – Origin / Provenance of the Fly Ash Carbons:

i) - Coal
ii) - Biomass
iii) - Pet coke ("petroleum coke")
iv) - Other (ex. sawdust, tires)

This level of classification of Fly Ash Components is addressed to the whole particle.

Examples of Origin / Provenance

Examples: Origin / Provenance

Long side of the pictures: 200 microns

To "All levels" slide

Description of the Classification Levels

Level # 6 – Type of Particle.

Apply the ICCP Char Classification

(From the Combustion Working Group-ICCP; Lester & Alvarez Convenors)

This level of classification of Fly Ash Components is addressed to the whole particle.

Examples of Particle Types

PgUp <

ICCP Char Classification

Examples of Particle Types

To "All levels" slide

Organization of the Photomicrographs

The images of Fly Ash Components included in this Atlas have been organized according to the **type of combustion**, the **main feed fuel** originating the Fly Ash and the **nature of the Fly Ash Component** (organic-unburned carbon, inorganic).

All the images (pair of images of the same Fly Ash Component in two different positions) are identified and classified following the Petrographic Fly Ash Classification (2012) previously described.

ICCP exercises (2007 and 2009) image number Example: Pulverized Coal Combustion (PCC)

Unburned Carbon

Level # 1- Nature: whole particle identification:	Organic
Level # 2- Character: particle field identification:	Unfused
Level # 3- Structure/Morphology: particle field identification:	Dense
Level # 4- Optical texture: particle field identification:	Anisotropic
Level # 5- Origin: whole particle identification:	Coal (High rank coal)
Level # 6: Type of particle (Char Classification): whole particle identification:	Solid

Long side of the pictures: 200 microns

ATLAS Index

PULVERIZED COAL COMBUSTION: FLY ASH CARBONS FLY ASH INORGANICS

STOKER BOILER: <u>FLY ASH CARBONS</u> <u>FLY ASH INORGANICS</u>

FLUIDISED BED COMBUSTION: FLY ASH CARBONS FLY ASH INORGANICS

OTHERS (ex., Sawdust, tires)

PULVERIZED COAL COMBUSTION: Fly ash carbons

Long side of the pictures: 200 microns

36 PgDn
PULVERIZED COAL COMBUSTION: Fly ash inorganics Origin: Medium Rank Bituminous Coal

Long side of the pictures: 200 microns

PgUp <

37

PgDn

Origin: Medium Rank Bituminous Coal

STOKER BOILER: Fly ash carbons

Atlas Index

Long side of the pictures: 200 micr PgUp

PgDn 38

Fluidised Bed Combustion: Fly ash carbons

OTHER: Fly ash carbons

Origin: <u>Biomass</u> (SAWDUST) .374

Fluidised Bed Combustion: Fly ash inorganics

Origin: Medium Rank Bituminous Coal

Atlas Index

PgDn 40

Unburned Carbon

Level # 1- Nature: whole particle identification:	Organic
Level # 2- Character: particle field identification:	Fused
Level # 3- Structure/Morphology: particle field identification:	Porous
Level # 4- Optical texture: particle field identification:	Anisotropic
Level # 5- Origin: whole particle identification:	Coal (High rank coal)
Level # 6: Type of particle (Char Classification): whole particle identification:	Tenuinetwork

Long side of the pictures: 200 microns

PqU

41

Unburned Carbon

Level # 1- Nature: whole particle identification:	Organic
Level # 2- Character: particle field identification:	Fused
Level # 3- Structure/Morphology: particle field identification:	Porous
Level # 4- Optical texture: particle field identification:	Anisotropic
Level # 5- Origin: whole particle identification:	Coal (High rank coal)
Level # 6: Type of particle (Char Classification): whole particle identification:	Tenuisphere

Long side of the pictures: 200 microns

42

Unburned Carbon

Level # 1- Nature: whole particle identification:	Organic
Level # 2- Character: particle field identification:	Fused
Level # 3- Structure/Morphology: particle field identification:	Porous
Level # 4- Optical texture: particle field identification:	Anisotropic
Level # 5- Origin: whole particle identification:	Coal (High rank coal)
Level # 6: Type of particle (Char Classification): whole particle identification:	Tenuinetwork

Long side of the pictures: 200 microns

Pulverized Coal Combustion Fly Ash Unburned Carbon

Level # 1- Nature: whole particle identification:	Organic
Level # 2- Character: particle field identification:	Unfused
Level # 3- Structure/Morphology: particle field identification:	Dense
Level # 4- Optical texture: particle field identification:	Isotropic
Level # 5- Origin: whole particle identification:	Coal (High rank coal)
Level # 6: Type of particle (Char Classification): whole particle identification:	Solid

Long side of the pictures: 200 microns

Unburned Carbon

Level # 1- Nature: whole particle identification:	Organic
Level # 2- Character: particle field identification:	Fused
Level # 3- Structure/Morphology: particle field identification:	Porous
Level # 4- Optical texture: particle field identification:	Anisotropic
Level # 5- Origin: whole particle identification:	Coal (High rank coal)
Level # 6: Type of particle (Char Classification): whole particle identification:	Tenuinetwork

Long side of the pictures: 200 microns

Unburned Carbon

Level # 1- Nature: whole particle identification:	Organic
Level # 2- Character: particle field identification:	Fused
Level # 3- Structure/Morphology: particle field identification:	Porous
Level # 4- Optical texture: <u>particle field_identification</u> :	Anisotropic
Level # 5- Origin: whole particle identification:	Coal (High rank coal)
Level # 6: Type of particle (Char Classification): whole particle identification:	Tenuinetwork

Long side of the pictures: 200 microns

Unburned Carbon

Level # 1- Nature: whole particle identification:	Organic
Level # 2- Character: particle field identification:	fused
Level # 3- Structure/Morphology: particle field identification:	porous
Level # 4- Optical texture: particle field identification:	Anisotropic
Level # 5- Origin: whole particle identification:	Coal (High rank coal)
Level # 6: Type of particle (Char Classification): whole particle identification:	Tenuinetwork

Long side of the pictures: 200 microns

All images frame: Pulverized Coal Combustion Fly Ash, unburned carbon

Unburned Carbon

Level # 1- Nature: whole particle identification:	Organic
Level # 2- Character: particle field identification:	Fused
Level # 3- Structure/Morphology: particle field identification:	Porous
Level # 4- Optical texture: particle field identification:	Anisotropic
Level # 5- Origin: whole particle identification:	Coal (High rank coal)
Level # 6: Type of particle (Char Classification): whole particle identification:	Tenuinetwork

Long side of the pictures: 200 microns

Unburned Carbon

Level # 1- Nature: whole particle identification:	Organic
Level # 2- Character: particle field identification:	Fused
Level # 3- Structure/Morphology: particle field identification:	Porous
Level # 4- Optical texture: particle field identification:	Anisotropic
Level # 5- Origin: whole particle identification:	Coal (High rank coal)
Level # 6: Type of particle (Char Classification): whole particle identification:	Tenuinetwork

Long side of the pictures: 200 microns

Unburned Carbon

Level # 1- Nature: whole particle identification:	Organic
Level # 2- Character: particle field identification:	Fused
Level # 3- Structure/Morphology: particle field identification:	Porous
Level # 4- Optical texture: particle field identification:	Anisotropic
Level # 5- Origin: whole particle identification:	Coal (High rank coal)
Level # 6: Type of particle (Char Classification): whole particle identification:	Tenuinetwork

Long side of the pictures: 200 microns

Unburned Carbon

Level # 1- Nature: whole particle identification:	Organic
Level # 2- Character: particle field identification:	Fused
Level # 3- Structure/Morphology: particle field identification:	Porous
Level # 4- Optical texture: particle field identification:	Anisotropic
Level # 5- Origin: whole particle identification:	Coal (High rank coal)
Level # 6: Type of particle (Char Classification): whole particle identification:	Tenuinetwork

Long side of the pictures: 200 microns

Pulverized Coal Combustion Fly Ash Unburned Carbon

Level # 1- Nature: whole particle identification:	Organic
Level # 2- Character: particle field identification:	Unfused
Level # 3- Structure/Morphology: particle field identification:	Dense
Level # 4- Optical texture: particle field identification:	Isotropic
Level # 5- Origin: whole particle identification:	Coal (Medium rank coal)
Level # 6: Type of particle (Char Classification): whole particle identification:	Inertoid

Long side of the pictures: 200 microns

Unburned Carbon

Level # 1- Nature: whole particle identification:	Organic
Level # 2- Character: particle field identification:	Fused
Level # 3- Structure/Morphology: particle field identification:	Porous
Level # 4- Optical texture: particle field identification:	Anisotropic
Level # 5- Origin: whole particle identification:	Coal (Medium rank coal)
Level # 6: Type of particle (Char Classification): whole particle identification:	Mixed porous

Long side of the pictures: 200 microns

Unburned Carbon

Level # 1- Nature: whole particle identification:	Organic
Level # 2- Character: particle field identification:	Fused
Level # 3- Structure/Morphology: particle field identification:	Porous
Level # 4- Optical texture: particle field identification:	Anisotropic
Level # 5- Origin: whole particle identification:	Coal (Medium rank coal)
Level # 6: Type of particle (Char Classification): whole particle identification:	Crassinetwork

Long side of the pictures: 200 microns

Unburned Carbon

Level # 1- Nature: whole particle identification:	Organic
Level # 2- Character: particle field identification:	Fused
Level # 3- Structure/Morphology: particle field identification:	Porous
Level # 4- Optical texture: particle field identification:	Anisotropic
Level # 5- Origin: whole particle identification:	Coal (Medium rank coal)
Level # 6: Type of particle (Char Classification): whole particle identification:	Tenuinetwork

Long side of the pictures: 200 microns

Unburned Carbon

Level # 1- Nature: whole particle identification:	Organic
Level # 2- Character: particle field identification:	Fused
Level # 3- Structure/Morphology: particle field identification:	Porous
Level # 4- Optical texture: particle field identification:	Anisotropic
Level # 5- Origin: whole particle identification:	Coal (Medium rank coal)
Level # 6: Type of particle (Char Classification): whole particle identification:	Crassinetwork

Long side of the pictures: 200 microns

Pulverized Coal Combustion Fly Ash Unburned Carbon

Level # 1- Nature: whole particle identification:	Organic
Level # 2- Character: particle field identification:	Fused
Level # 3- Structure/Morphology: particle field identification:	Porous
Level # 4- Optical texture: particle field identification:	Isotropic
Level # 5- Origin: whole particle identification:	Coal (Medium rank coal)
Level # 6: Type of particle (Char Classification): whole particle identification:	Tenuisphere

Long side of the pictures: 200 microns

102

All images frame: Pulverized Coal Combustion Fly Ash, unburned carbon

PaDn

Unburned Carbon

Level # 1- Nature: whole particle identification:	Organic
Level # 2- Character: particle field identification:	Fused
Level # 3- Structure/Morphology: particle field identification:	Porous
Level # 4- Optical texture: particle field identification:	Anisotropic
Level # 5- Origin: whole particle identification:	Coal (Medium rank coal)
Level # 6: Type of particle (Char Classification): whole particle identification:	Tenuinetwork

Long side of the pictures: 200 microns

Unburned Carbon

Level # 1- Nature: whole particle identification:	Organic
Level # 2- Character: particle field identification:	Fused
Level # 3- Structure/Morphology: particle field identification:	Porous
Level # 4- Optical texture: particle field identification:	Isotropic
Level # 5- Origin: whole particle identification:	Coal (Medium rank coal)
Level # 6: Type of particle (Char Classification): whole particle identification:	Crassisphere

Long side of the pictures: 200 microns

Unburned Carbon

Level # 1- Nature: whole particle identification:	Organic
Level # 2- Character: particle field identification:	Fused
Level # 3- Structure/Morphology: particle field identification:	Porous
Level # 4- Optical texture: particle field identification:	Anisotropic
Level # 5- Origin: whole particle identification:	Coal (Medium rank coal)
Level # 6: Type of particle (Char Classification): whole particle identification:	Crassisphere

Long side of the pictures: 200 microns

Unburned Carbon

Level # 1- Nature: whole particle identification:	Organic
Level # 2- Character: particle field identification:	Fused
Level # 3- Structure/Morphology: particle field identification:	Porous
Level # 4- Optical texture: particle field identification:	Anisotropic
Level # 5- Origin: whole particle identification:	Coal (Medium rank coal)
Level # 6: Type of particle (Char Classification): whole particle identification:	Crassisphere

Long side of the pictures: 200 microns

Unburned Carbon

Level # 1- Nature: whole particle identification:	Organic
Level # 2- Character: particle field identification:	Fused
Level # 3- Structure/Morphology: particle field identification:	Porous
Level # 4- Optical texture: particle field identification:	Isotropic
Level # 5- Origin: whole particle identification:	Coal (Medium rank coal)
Level # 6: Type of particle (Char Classification): whole particle identification:	Crassisphere

Long side of the pictures: 200 microns

Pulverized Coal Combustion Fly Ash Unburned Carbon

Level # 1- Nature: whole particle identification:	Organic
Level # 2- Character: particle field identification:	Unfused
Level # 3- Structure/Morphology: particle field identification:	Dense
Level # 4- Optical texture: particle field identification:	Isotropic
Level # 5- Origin: whole particle identification:	Coal (Medium rank coal)
Level # 6: Type of particle (Char Classification): whole particle identification:	Mixed porous

Long side of the pictures: 200 microns

Pulverized Coal Combustion Fly Ash Unburned Carbon

Level # 1- Nature: whole particle identification:	Organic
Level # 2- Character: particle field identification:	Fused
Level # 3- Structure/Morphology: particle field identification:	Porous
Level # 4- Optical texture: particle field identification:	Anisotropic
Level # 5- Origin: whole particle identification:	Coal (Medium rank coal)
Level # 6: Type of particle (Char Classification): whole particle identification:	Tenuinetwork

Long side of the pictures: 200 microns

Unburned Carbon

Level # 1- Nature: whole particle identification:	Organic
Level # 2- Character: particle field identification:	Unfused
Level # 3- Structure/Morphology: particle field identification:	Dense
Level # 4- Optical texture: particle field identification:	Isotropic
Level # 5- Origin: whole particle identification:	Coal (Low rank coal)
Level # 6: Type of particle (Char Classification): whole particle identification:	Solid

Long side of the pictures: 200 microns

Pulverized Coal Combustion Fly Ash Unburned Carbon

Level # 1- Nature: whole particle identification:	Organic
Level # 2- Character: particle field identification:	Fused
Level # 3- Structure/Morphology: particle field identification:	Porous
Level # 4- Optical texture: particle field identification:	Anisotropic
Level # 5- Origin: whole particle identification:	Coal (Low rank coal)
Level # 6: Type of particle (Char Classification): whole particle identification:	Crassinetwork

Long side of the pictures: 200 microns

Unburned Carbon

Level # 1- Nature: whole particle identification:	Organic
Level # 2- Character: particle field identification:	Fused
Level # 3- Structure/Morphology: particle field identification:	Porous
Level # 4- Optical texture: particle field identification:	Isotropic
Level # 5- Origin: whole particle identification:	Coal (Low rank coal)
Level # 6: Type of particle (Char Classification): whole particle identification:	Crassinetwork

Long side of the pictures: 200 microns

Pulverized Coal Combustion Fly Ash from: COAL BLEND + PET COKE Unburned Carbon

Level # 1- Nature: whole particle identification:	Organic
Level # 2- Character: particle field identification:	Unfused
Level # 3- Structure/Morphology: particle field identification:	Porous
Level # 4- Optical texture: particle field identification:	Anisotropic
Level # 5- Origin: whole particle identification:	Coal (anthracite)
Level # 6: Type of particle (Char Classification): whole particle identification:	Inertoid (from vitrinite)

Long side of the pictures: 200 microns

Pulverized Coal Combustion Fly Ash from: COAL BLEND + PET COKE Unburned Carbon

Level # 1- Nature: whole particle identification:	Organic
Level # 2- Character: particle field identification:	Unfused
Level # 3- Structure/Morphology: particle field identification:	Dense
Level # 4- Optical texture: particle field identification:	Isotropic
Level # 5- Origin: whole particle identification:	Coal (anthracite)
Level # 6: Type of particle (Char Classification): whole particle identification:	Solid

Long side of the pictures: 200 microns

All images frame: Pulverized Coal Combustion Fly Ash, unburned carbon

Pulverized Coal Combustion Fly Ash from: COAL BLEND + PET COKE Unburned Carbon

Level # 1- Nature: whole particle identification:	Organic
Level # 2- Character: particle field identification:	Unfused
Level # 3- Structure/Morphology: particle field identification:	Dense
Level # 4- Optical texture: particle field identification:	Anisotropic
Level # 5- Origin: whole particle identification:	Coal (anthracite)
Level # 6: Type of particle (Char Classification): whole particle identification:	Inertoid (from vitrinite)

Long side of the pictures: 200 microns

Pulverized Coal Combustion Fly Ash COAL BLEND + BIOMASS (sewage sludge + olive pulp)

Unburned Carbon

Level # 1- Nature: whole particle identification:	Organic
Level # 2- Character: particle field identification:	Fused
Level # 3- Structure/Morphology: particle field identification:	Porous
Level # 4- Optical texture: particle field identification:	Anisotropic
Level # 5- Origin: whole particle identification:	Coal
Level # 6: Type of particle (Char Classification): whole particle identification:	Crassinetwork

224

All images frame:

Pulverized Coal Combustion Fly Ash, unburned carbon

Long side of the pictures: 200 microns

Pulverized Coal Combustion Fly Ash COAL BLEND + BIOMASS (sewage sludge + olive pulp)

Unburned Carbon

Level # 1- Nature: whole particle identification:	Organic
Level # 2- Character: particle field identification:	Fused
Level # 3- Structure/Morphology: particle field identification:	Porous
Level # 4- Optical texture: particle field identification:	Isotropic
Level # 5- Origin: whole particle identification:	Coal
Level # 6: Type of particle (Char Classification): whole particle identification:	Crassinetwork

225

All images frame:

Pulverized Coal Combustion Fly Ash, unburned carbon

Long side of the pictures: 200 microns

Unburned Carbon

Level # 1- Nature: whole particle identification:	Organic
Level # 2- Character: particle field identification:	Unfused
Level # 3- Structure/Morphology: particle field identification:	Dense
Level # 4- Optical texture: particle field identification:	Isotropic
Level # 5- Origin: whole particle identification:	Coal
Level # 6: Type of particle (Char Classification): whole particle identification:	Solid

All images frame:

Pulverized Coal Combustion Fly Ash, unburned carbon

Unburned Carbon

Level # 1- Nature: whole particle identification:	Organic
Level # 2- Character: particle field identification:	Unfused
Level # 3- Structure/Morphology: particle field identification:	Dense
Level # 4- Optical texture: particle field identification:	Isotropic
Level # 5- Origin: whole particle identification:	Coal
Level # 6: Type of particle (Char Classification): whole particle identification:	Inertoid

PgUp

230

All images frame:

Pulverized Coal Combustion Fly Ash, unburned carbon

Unburned Carbon

Level # 1- Nature: whole particle identification:	Organic
Level # 2- Character: particle field identification:	Unfused
Level # 3- Structure/Morphology: particle field identification:	Dense
Level # 4- Optical texture: particle field identification:	Isotropic
Level # 5- Origin: whole particle identification:	Coal
Level # 6: Type of particle (Char Classification): whole particle identification:	Mixed porous

231

All images frame:

Pulverized Coal Combustion Fly Ash, unburned carbon

Unburned Carbon

Level # 1- Nature: whole particle identification:	Organic
Level # 2- Character: particle field identification:	Fused
Level # 3- Structure/Morphology: particle field identification:	Porous
Level # 4- Optical texture: particle field identification:	Isotropic
Level # 5- Origin: whole particle identification:	Coal
Level # 6: Type of particle (Char Classification): whole particle identification:	Mixed porous

All images frame:

Pulverized Coal Combustion Fly Ash, unburned carbon

Pulverized Coal Combustion Fly Ash COAL BLEND + BIOMASS (sewage sludge + olive stone/olive pulp)

Unburned Carbon

Level # 1- Nature: whole particle identification:	Organic
Level # 2- Character: particle field identification:	Fused
Level # 3- Structure/Morphology: particle field identification:	Porous
Level # 4- Optical texture: particle field identification:	Anisotropic
Level # 5- Origin: whole particle identification:	Coal
Level # 6: Type of particle (Char Classification): whole particle identification:	Crassinetwork

236

All images frame:

Pulverized Coal Combustion Fly Ash, unburned carbon

Long side of the pictures: 200 microns

PqUp

Pulverized Coal Combustion Fly Ash COAL BLEND + BIOMASS (sewage sludge + olive stone/olive pulpes)

Unburned Carbon

Level # 1- Nature: whole particle identification:	Organic
Level # 2- Character: particle field identification:	Unfused
Level # 3- Structure/Morphology: particle field identification:	Dense
Level # 4- Optical texture: particle field identification:	Anisotropic
Level # 5- Origin: whole particle identification:	Coal
Level # 6: Type of particle (Char Classification): whole particle identification:	Inertoid

Long side of the pictures: 200 microns

PgL

All images frame:

Pulverized Coal Combustion Fly Ash, unburned carbon

Level # 1- Nature: whole particle identification:	Organic
Level # 2- Character: particle field identification:	Unfused
Level # 3- Structure/Morphology: particle field identification:	Dense
Level # 4- Optical texture: <u>particle field_identification</u> :	Isotropic
Level # 5- Origin: whole particle identification:	Coal (Medium rank coal)
Level # 6: Type of particle (Char Classification): whole particle identification:	-

Long side of the pictures: 200 microns

PgUp ┥ 🕨 PgDn

Level # 1- Nature: whole particle identification:	Organic
Level # 2- Character: particle field identification:	Fused
Level # 3- Structure/Morphology: particle field identification:	Porous
Level # 4- Optical texture: particle field identification:	Anisotropic
Level # 5- Origin: whole particle identification:	Coal (Medium rank coal)
Level # 6: Type of particle (Char Classification): whole particle identification:	-

Long side of the pictures: 200 microns

PgUp ┥ 🕨

Level # 1- Nature: whole particle identification:	Organic
Level # 2- Character: particle field identification:	Unfused
Level # 3- Structure/Morphology: particle field identification:	Dense
Level # 4- Optical texture: <u>particle field_identification</u> :	Isotropic
Level # 5- Origin: whole particle identification:	Coal (Medium rank coal)
Level # 6: Type of particle (Char Classification): whole particle identification:	-

Long side of the pictures: 200 microns

PgUp

Level # 1- Nature: whole particle identification:	Organic
Level # 2- Character: particle field identification:	Unfused
Level # 3- Structure/Morphology: particle field identification:	Dense
Level # 4- Optical texture: particle field identification:	Isotropic
Level # 5- Origin: whole particle identification:	Coal (Medium rank coal)
Level # 6: Type of particle (Char Classification): whole particle identification:	-

Long side of the pictures: 200 microns

PgUp

Stoker boiler Fly Ash

Unburned Carbon – Pyrolytic carbon

Level # 1- Nature: whole particle identification:	Organic
Level # 2- Character: particle field identification:	Fused
Level # 3- Structure/Morphology: particle field identification:	Dense
Level # 4- Optical texture: particle field identification:	Anisotropic
Level # 5- Origin: whole particle identification:	Coal (Medium rank coal)
Level # 6: Type of particle (Char Classification): whole particle identification:	-

Stoker boiler Fly Ash

Unburned Carbon – Pyrolytic carbon

Level # 1- Nature: whole particle identification:	Organic
Level # 2- Character: particle field identification:	Fused
Level # 3- Structure/Morphology: particle field identification:	Dense
Level # 4- Optical texture: particle field identification:	Anisotropic
Level # 5- Origin: whole particle identification:	Coal (Medium rank coal)
Level # 6: Type of particle (Char Classification): whole particle identification:	-

Stoker boiler Fly Ash

Unburned Carbon – Pyrolytic carbon

Level # 1- Nature: whole particle identification:	Organic
Level # 2- Character: particle field identification:	Fused
Level # 3- Structure/Morphology: particle field identification:	Dense
Level # 4- Optical texture: <u>particle field_identification</u> :	Anisotropic
Level # 5- Origin: whole particle identification:	Coal (Medium rank coal)
Level # 6: Type of particle (Char Classification): whole particle identification:	-

Long side of the pictures: 200 microns

Stoker boiler Fly Ash Unburned Carbon – Pyrolytic carbon

Level # 1- Nature: whole particle identification:	Organic
Level # 2- Character: particle field identification:	Fused
Level # 3- Structure/Morphology: particle field identification:	Dense
Level # 4- Optical texture: particle field identification:	Anisotropic
Level # 5- Origin: whole particle identification:	Coal (Medium rank coal)
Level # 6: Type of particle (Char Classification): whole particle identification:	Crassisphere

Long side of the pictures: 200 microns

PgUp

Stoker boiler Fly Ash Unburned Carbon – Pyrolytic carbon

Level # 1- Nature: whole particle identification:	Organic
Level # 2- Character: particle field identification:	Fused
Level # 3- Structure/Morphology: particle field identification:	Dense
Level # 4- Optical texture: particle field identification:	Anisotropic
Level # 5- Origin: whole particle identification:	Coal (Medium rank coal)
Level # 6: Type of particle (Char Classification): whole particle identification:	-

Long side of the pictures: 200 microns

PgUp ┥ 🕨

Level # 1- Nature: whole particle identification:	Organic
Level # 2- Character: particle field identification:	Unfused
Level # 3- Structure/Morphology: particle field identification:	Dense
Level # 4- Optical texture: particle field identification:	Isotropic
Level # 5- Origin: whole particle identification:	Coal (Medium rank coal)
Level # 6: Type of particle (Char Classification): whole particle identification:	Solid

Long side of the pictures: 200 microns

Level # 1- Nature: whole particle identification:	Organic
Level # 2- Character: particle field identification:	Fused
Level # 3- Structure/Morphology: particle field identification:	Porous
Level # 4- Optical texture: particle field identification:	Anisotropic
Level # 5- Origin: whole particle identification:	Coal (Medium rank coal)
Level # 6: Type of particle (Char Classification): whole particle identification:	-

Long side of the pictures: 200 microns

PgUp

Level # 1- Nature: whole particle identification:	Organic
Level # 2- Character: particle field identification:	Unfused
Level # 3- Structure/Morphology: particle field identification:	Dense
Level # 4- Optical texture: particle field identification:	Isotropic
Level # 5- Origin: whole particle identification:	Coal (Medium rank coal)
Level # 6: Type of particle (Char Classification): whole particle identification:	Crassisphere

Long side of the pictures: 200 microns

PgUp

PgDn 90

Level # 1- Nature: whole particle identification:	Organic
Level # 2- Character: particle field identification:	Unfused
Level # 3- Structure/Morphology: particle field identification:	Dense
Level # 4- Optical texture: particle field identification:	Isotropic
Level # 5- Origin: whole particle identification:	Coal (Medium rank coal)
Level # 6: Type of particle (Char Classification): whole particle identification:	-

Long side of the pictures: 200 microns

PgDn 91

Level # 1- Nature: whole particle identification:	Organic
Level # 2- Character: particle field identification:	Fused
Level # 3- Structure/Morphology: particle field identification:	Porous
Level # 4- Optical texture: <u>particle field_identification</u> :	Anisotropic
Level # 5- Origin: whole particle identification:	Coal (Medium rank coal)
Level # 6: Type of particle (Char Classification): whole particle identification:	-

Long side of the pictures: 200 microns

PgUp

Fluidised Bed Combustion Fly Ash Unburned Carbon

Level # 1- Nature: whole particle identification:	Organic
Level # 2- Character: particle field identification:	Unfused
Level # 3- Structure/Morphology: particle field identification:	Dense
Level # 4- Optical texture: particle field identification:	Isotropic
Level # 5- Origin: whole particle identification:	Coal (Medium rank coal)
Level # 6: Type of particle (Char Classification): whole particle identification:	-

Long side of the pictures: 200 microns

307

All images frame:

Fluidised Bed Combustion Fly Ash, unburned carbon

Fluidised Bed Combustion Fly Ash Unburned Carbon

Level # 1- Nature: whole particle identification:	Organic
Level # 2- Character: particle field identification:	Unfused
Level # 3- Structure/Morphology: particle field identification:	Dense
Level # 4- Optical texture: particle field identification:	Isotropic
Level # 5- Origin: whole particle identification:	Coal (Medium rank coal)
Level # 6: Type of particle (Char Classification): whole particle identification:	-

Long side of the pictures: 200 microns

PgUp

All images frame:

Fluidised Bed Combustion Fly Ash, unburned carbon

PgDn 94

Fluidised Bed Combustion Fly Ash Unburned Carbon

Level # 1- Nature: whole particle identification:	Organic
Level # 2- Character: particle field identification:	Fused
Level # 3- Structure/Morphology: particle field identification:	Porous
Level # 4- Optical texture: <u>particle field identification</u> :	Anisotropic
Level # 5- Origin: whole particle identification:	Coal (Medium rank coal)
Level # 6: Type of particle (Char Classification): whole particle identification:	Crassisphere

Long side of the pictures: 200 microns

All images frame:

Fluidised Bed Combustion Fly Ash, unburned carbon

Fluidised Bed Combustion Fly Ash COAL TAILINGS + BIOMASS (wood pellets)

Unburned Carbon

Level # 1- Nature: whole particle identification:	Organic
Level # 2- Character: particle field identification:	Fused
Level # 3- Structure/Morphology: particle field identification:	Porous
Level # 4- Optical texture: particle field identification:	Anisotropic
Level # 5- Origin: whole particle identification:	Coal
Level # 6: Type of particle (Char Classification): whole particle identification:	-

332

All images frame:

Fluidised Bed Combustion Fly Ash, unburned carbon

Fluidised Bed Combustion Fly Ash COAL TAILINGS + BIOMASS (wood pellets)

Unburned Carbon

Level # 1- Nature: whole particle identification:	Organic
Level # 2- Character: particle field identification:	Fused
Level # 3- Structure/Morphology: particle field identification:	Porous
Level # 4- Optical texture: particle field identification:	Anisotropic
Level # 5- Origin: whole particle identification:	Coal
Level # 6: Type of particle (Char Classification): whole particle identification:	Tenuinetwork

All images frame:

Fluidised Bed Combustion Fly Ash, unburned carbon

Fluidised Bed Combustion Fly Ash COAL TAILINGS + BIOMASS (wood pellets)

Unburned Carbon

Level # 1- Nature: whole particle identification:	Organic
Level # 2- Character: particle field identification:	Fused
Level # 3- Structure/Morphology: particle field identification:	Porous
Level # 4- Optical texture: particle field identification:	Anisotropic
Level # 5- Origin: whole particle identification:	Coal
Level # 6: Type of particle (Char Classification): whole particle identification:	Crassisphere

340

All images frame:

Fluidised Bed Combustion Fly Ash, unburned carbon

Fluidised Bed Combustion Fly Ash BIOMASS (wood pellets)

Unburned Carbon

Level # 1- Nature: whole particle identification:	Organic
Level # 2- Character: particle field identification:	Unfused
Level # 3- Structure/Morphology: particle field identification:	Dense
Level # 4- Optical texture: particle field identification:	Isotropic
Level # 5- Origin: whole particle identification:	Biomass
Level # 6: Type of particle (Char Classification): whole particle identification:	-

321

All images frame:

Fluidised Bed Combustion Fly Ash, unburned carbon

Fluidised Bed Combustion Fly Ash BIOMASS (wood pellets)

Unburned Carbon

Level # 1- Nature: whole particle identification:	Organic
Level # 2- Character: particle field identification:	Unfused
Level # 3- Structure/Morphology: particle field identification:	Porous
Level # 4- Optical texture: particle field identification:	Isotropic
Level # 5- Origin: whole particle identification:	Biomass
Level # 6: Type of particle (Char Classification): whole particle identification:	-

All images frame:

Fluidised Bed Combustion Fly Ash, unburned carbon

Fluidised Bed Combustion Fly Ash BIOMASS (Eucalyptus)

Unburned Carbon

Level # 1- Nature: whole particle identification:	Organic
Level # 2- Character: particle field identification:	Fused
Level # 3- Structure/Morphology: particle field identification:	Porous
Level # 4- Optical texture: particle field identification:	Isotropic
Level # 5- Origin: whole particle identification:	Biomass
Level # 6: Type of particle (Char Classification): whole particle identification:	-

All images frame:

Fluidised Bed Combustion Fly Ash, unburned carbon

Fluidised Bed Combustion Fly Ash BIOMASS (Eucalyptus)

Unburned Carbon

Level # 1- Nature: whole particle identification:	Organic
Level # 2- Character: particle field identification:	Unfused
Level # 3- Structure/Morphology: particle field identification:	Porous
Level # 4- Optical texture: particle field identification:	Isotropic
Level # 5- Origin: whole particle identification:	Biomass
Level # 6: Type of particle (Char Classification): whole particle identification:	-

370

All images frame:

Fluidised Bed Combustion Fly Ash, unburned carbon

Fluidised Bed Combustion Fly Ash BIOMASS (Eucalyptus)

Unburned Carbon

Level # 1- Nature: whole particle identification:	Organic
Level # 2- Character: particle field identification:	Fused
Level # 3- Structure/Morphology: particle field identification:	Porous
Level # 4- Optical texture: particle field identification:	Isotropic
Level # 5- Origin: whole particle identification:	Biomass
Level # 6: Type of particle (Char Classification): whole particle identification:	-

All images frame:

Fluidised Bed Combustion Fly Ash, unburned carbon

Unburned Carbon

Level # 1- Nature: whole particle identification:	Organic
Level # 2- Character: particle field identification:	Unfused
Level # 3- Structure/Morphology: particle field identification:	Porous
Level # 4- Optical texture: particle field identification:	Isotropic
Level # 5- Origin: whole particle identification:	Biomass
Level # 6: Type of particle (Char Classification): whole particle identification:	-

349

All images frame: Stoker Boiler Fly Ash, unburned carbon

Unburned Carbon

Level # 1- Nature: whole particle identification:	Organic
Level # 2- Character: particle field identification:	Unfused
Level # 3- Structure/Morphology: particle field identification:	Porous
Level # 4- Optical texture: particle field identification:	Isotropic
Level # 5- Origin: whole particle identification:	Biomass
Level # 6: Type of particle (Char Classification): whole particle identification:	-

All images frame: Stoker Boiler Fly Ash, unburned carbon

Unburned Carbon

Level # 1- Nature: whole particle identification:	Organic
Level # 2- Character: particle field identification:	Fused
Level # 3- Structure/Morphology: particle field identification:	Porous
Level # 4- Optical texture: particle field identification:	Isotropic
Level # 5- Origin: whole particle identification:	Biomass
Level # 6: Type of particle (Char Classification): whole particle identification:	-

351

All images frame:

Stoker Boiler Fly Ash, unburned carbon

Unburned Carbon

Level # 1- Nature: whole particle identification:	Organic
Level # 2- Character: particle field identification:	Unfused
Level # 3- Structure/Morphology: particle field identification:	Porous
Level # 4- Optical texture: particle field identification:	Isotropic
Level # 5- Origin: whole particle identification:	Biomass
Level # 6: Type of particle (Char Classification): whole particle identification:	-

All images frame: Stoker Boiler Fly Ash, unburned carbon

Other BIOMASS (Sawdust)

Unburned Carbon

Level # 1- Nature: whole particle identification:	Organic
Level # 2- Character: particle field identification:	Unfused
Level # 3- Structure/Morphology: particle field identification:	Porous
Level # 4- Optical texture: particle field identification:	Isotropic
Level # 5- Origin: whole particle identification:	Biomass
Level # 6: Type of particle (Char Classification): whole particle identification:	-

All images frame: Other, Biomass, unburned carbon

Inorganics

Origin	High rank coal
Level # 1 - Nature: whole particle identification:	Inorganic
Level # 2 - Composition (Metallic/Non-Metallic)	Non-Metallic
Level # 3 - Type of particle (Char Classification): whole particle identification:	Mineroid

Inorganics

Origin	High rank coal
Level # 1 - Nature: whole particle identification:	Inorganic
Level # 2 - Composition (Metallic/Non-Metallic)	Non-Metallic
Level # 3 - Type of particle (Char Classification): whole particle identification:	Mineroid

Inorganics

Origin	High rank coal
Level # 1 - Nature: whole particle identification:	Inorganic
Level # 2 - Composition (Metallic/Non-Metallic)	Non-Metallic
Level # 3 - Type of particle (Char Classification): whole particle identification:	Mineroid

Inorganics

Origin	High rank coal
Level # 1 - Nature: whole particle identification:	Inorganic
Level # 2 - Composition (Metallic/Non-Metallic)	Metallic
Level # 3 - Type of particle (Char Classification): whole particle identification:	Mineroid

Inorganics

Origin	Medium rank coal
Level # 1 - Nature: whole particle identification:	Inorganic
Level # 2 - Composition (Metallic/Non-Metallic)	Metallic
Level # 3 - Type of particle (Char Classification): whole particle identification:	Mineroid

Inorganics

Origin	Medium rank coal
Level # 1 - Nature: whole particle identification:	Inorganic
Level # 2 - Composition (Metallic/Non-Metallic)	Metallic
Level # 3 - Type of particle (Char Classification): whole particle identification:	Mineroid

Inorganics

Origin	Medium rank coal
Level # 1 - Nature: whole particle identification:	Inorganic
Level # 2 - Composition (Metallic/Non-Metallic)	Non-Metallic
Level # 3 - Type of particle (Char Classification): whole particle identification:	Mineroid

Inorganics

Origin	Medium rank coal
Level # 1 - Nature: whole particle identification:	Inorganic
Level # 2 - Composition (Metallic/Non-Metallic)	Non-Metallic
Level # 3 - Type of particle (Char Classification): whole particle identification:	Mineroid

Inorganics

Origin	Low rank coal
Level # 1 - Nature: whole particle identification:	Inorganic
Level # 2 - Composition (Metallic/Non-Metallic)	Metallic
Level # 3 - Type of particle (Char Classification): whole particle identification:	Mineroid

Long side of the pictures: 200 microns

PgUp ┥ 🕨 PgDn 117

Inorganics

Origin	Low rank coal
Level # 1 - Nature: whole particle identification:	Inorganic
Level # 2 - Composition (Metallic/Non-Metallic)	Metallic
Level # 3 - Type of particle (Char Classification): whole particle identification:	Mineroid

Inorganics

Origin	Low rank coal
Level # 1 - Nature: whole particle identification:	Inorganic
Level # 2 - Composition (Metallic/Non-Metallic)	Non-Metallic
Level # 3 - Type of particle (Char Classification): whole particle identification:	Mineroid

Inorganics

Origin	Low rank coal
Level # 1 - Nature: whole particle identification:	Inorganic
Level # 2 - Composition (Metallic/Non-Metallic)	Non-Metallic
Level # 3 - Type of particle (Char Classification): whole particle identification:	Mineroid

Long side of the pictures: 200 microns

PgDn 120

Inorganics

Origin	Low rank coal
Level # 1 - Nature: whole particle identification:	Inorganic
Level # 2 - Composition (Metallic/Non-Metallic)	Non-Metallic
Level # 3 - Type of particle (Char Classification): whole particle identification:	Mineroid

Inorganics

Origin	Low rank coal
Level # 1 - Nature: whole particle identification:	Inorganic
Level # 2 - Composition (Metallic/Non-Metallic)	Metallic
Level # 3 - Type of particle (Char Classification): whole particle identification:	Mineroid

Inorganics

Origin	Low rank coal
Level # 1 - Nature: whole particle identification:	Inorganic
Level # 2 - Composition (Metallic/Non-Metallic)	Metallic
Level # 3 - Type of particle (Char Classification): whole particle identification:	Mineroid

Inorganics

Origin	Low rank coal
Level # 1 - Nature: whole particle identification:	Inorganic
Level # 2 - Composition (Metallic/Non-Metallic)	Non-Metallic
Level # 3 - Type of particle (Char Classification): whole particle identification:	Mineroid

201

Pulverized Coal Combustion Fly Ash

Inorganics

Origin	Low rank coal
Level # 1 - Nature: whole particle identification:	Inorganic
Level # 2 - Composition (Metallic/Non-Metallic)	Metallic
Level # 3 - Type of particle (Char Classification): whole particle identification:	Mineroid

Pulverized Coal Combustion Fly Ash COAL BLEND + BIOMASS (sewage sludge + olive pulp)

Inorganics

Level # 1 - Nature: whole particle identification:	Inorganic
Level # 2 - Composition (Metallic/Non-Metallic)	Metallic
Level # 3 - Type of particle (Char Classification): whole particle identification:	Mineroid

Pulverized Coal Combustion Fly Ash COAL BLEND + BIOMASS (sewage sludge + olive pulp)

Inorganics

Level # 1 - Nature: whole particle identification:	Inorganic
Level # 2 - Composition (Metallic/Non-Metallic)	Metallic
Level # 3 - Type of particle (Char Classification): whole particle identification:	Mineroid

Pulverized Coal Combustion Fly Ash COAL BLEND + BIOMASS (sewage sludge + olive pulp)

Inorganics

Level # 1 - Nature: whole particle identification:	Inorganic
Level # 2 - Composition (Metallic/Non-Metallic)	Non-Metallic
Level # 3 - Type of particle (Char Classification): whole particle identification:	Mineroid

Pulverized Coal Combustion Fly Ash COAL BLEND + BIOMASS (wood pellets + palm pit scales)

Inorganics

Level # 1 - Nature: whole particle identification:	Inorganic
Level # 2 - Composition (Metallic/Non-Metallic)	Metallic
Level # 3 - Type of particle (Char Classification): whole particle identification:	Mineroid

Pulverized Coal Combustion Fly Ash COAL BLEND + BIOMASS (wood pellets + palm pit scales)

Inorganics

Level # 1 - Nature: whole particle identification:	Inorganic
Level # 2 - Composition (Metallic/Non-Metallic)	Non-Metallic
Level # 3 - Type of particle (Char Classification): whole particle identification:	Mineroid

Pulverized Coal Combustion Fly Ash COAL BLEND + BIOMASS (wood pellets + palm pit scales)

Inorganics

Level # 1 - Nature: whole particle identification:	Inorganic
Level # 2 - Composition (Metallic/Non-Metallic)	Metallic
Level # 3 - Type of particle (Char Classification): whole particle identification:	Mineroid

Pulverized Coal Combustion Fly Ash COAL BLEND + BIOMASS (sewage sludge + olive stone/olive pulp)

Inorganics

Level # 1 - Nature: whole particle identification:	Inorganic
Level # 2 - Composition (Metallic/Non-Metallic)	Non-Metallic
Level # 3 - Type of particle (Char Classification): whole particle identification:	Mineroid

Origin	Medium rank coal
Level # 1 - Nature: whole particle identification:	Inorganic
Level # 2 - Composition (Metallic/Non-Metallic)	Metallic

Level # 3 - Type of particle (Char Classification): whole particle identification:

Mineroid

Origin	Medium rank coal
Level # 1 - Nature: whole particle identification:	Inorganic
Level # 2 - Composition (Metallic/Non-Metallic)	Metallic
Level # 3 - Type of particle (Char Classification): whole particle identification:	Mineroid

Origin	Medium rank coal
Level # 1 - Nature: whole particle identification:	Inorganic
Level # 2 - Composition (Metallic/Non-Metallic)	Non-Metallic
Level # 3 - Type of particle (Char Classification): whole particle identification:	Mineroid

Origin	Medium rank coal
Level # 1 - Nature: whole particle identification:	Inorganic
Level # 2 - Composition (Metallic/Non-Metallic)	Metallic
Level # 3 - Type of particle (Char Classification): whole particle identification:	Mineroid

Origin	Medium rank coal
Level # 1 - Nature: whole particle identification:	Inorganic
Level # 2 - Composition (Metallic/Non-Metallic)	Non-Metallic
Level # 3 - Type of particle (Char Classification): whole particle identification:	Mineroid

Origin	Medium rank coal
Level # 1 - Nature: whole particle identification:	Inorganic
Level # 2 - Composition (Metallic/Non-Metallic)	Metallic
Level # 3 - Type of particle (Char Classification): whole particle identification:	Mineroid

Origin	Medium rank coal
Level # 1 - Nature: whole particle identification:	Inorganic
Level # 2 - Composition (Metallic/Non-Metallic)	Non-Metallic
Level # 3 - Type of particle (Char Classification): whole particle identification:	Mineroid

Origin	Medium rank coal
Level # 1 - Nature: whole particle identification:	Inorganic
Level # 2 - Composition (Metallic/Non-Metallic)	Non-Metallic
Level # 3 - Type of particle (Char Classification): whole particle identification:	Mineroid

Origin	Medium rank coal
Level # 1 - Nature: whole particle identification:	Inorganic
Level # 2 - Composition (Metallic/Non-Metallic)	Metallic
Level # 3 - Type of particle (Char Classification): whole particle identification:	Mineroid

Fluidised Bed Combustion Fly Ash

Inorganics

Origin	Medium rank coal
Level # 1 - Nature: whole particle identification:	Inorganic
Level # 2 - Composition (Metallic/Non-Metallic)	Non-Metallic
Level # 3 - Type of particle (Char Classification): whole particle identification:	Mineroid

Fluidised Bed Combustion Fly Ash

Inorganics

Origin	Medium rank coal
Level # 1 - Nature: whole particle identification:	Inorganic
Level # 2 - Composition (Metallic/Non-Metallic)	Non-Metallic
Level # 3 - Type of particle (Char Classification): whole particle identification:	Mineroid

Fluidised Bed Combustion Fly Ash

Inorganics

Origin	Medium rank coal
Level # 1 - Nature: whole particle identification:	Inorganic
Level # 2 - Composition (Metallic/Non-Metallic)	Metallic
Level # 3 - Type of particle (Char Classification): whole particle identification:	Mineroid

Inorganics

Origin	Medium rank coal
Level # 1 - Nature: whole particle identification:	Inorganic
Level # 2 - Composition (Metallic/Non-Metallic)	Metallic
Level # 3 - Type of particle (Char Classification): whole particle identification:	Mineroid

Inorganics

Origin	Medium rank coal
Level # 1 - Nature: whole particle identification:	Inorganic
Level # 2 - Composition (Metallic/Non-Metallic)	Non-Metallic
Level # 3 - Type of particle (Char Classification): whole particle identification:	Mineroid

Inorganics

Origin	Medium rank coal
Level # 1 - Nature: whole particle identification:	Inorganic
Level # 2 - Composition (Metallic/Non-Metallic)	Non-Metallic
Level # 3 - Type of particle (Char Classification): whole particle identification:	Mineroid

Origin	Medium rank coal
Level # 1 - Nature: whole particle identification:	Inorganic
Level # 2 - Composition (Metallic/Non-Metallic)	Non-Metallic
Level # 3 - Type of particle (Char Classification): whole particle identification:	Mineroid

Origin	Medium rank coal
Level # 1 - Nature: whole particle identification:	Inorganic
Level # 2 - Composition (Metallic/Non-Metallic)	Non-Metallic
Level # 3 - Type of particle (Char Classification): whole particle identification:	Mineroid

Origin	Medium rank coal
Level # 1 - Nature: whole particle identification:	Inorganic
Level # 2 - Composition (Metallic/Non-Metallic)	Non-Metallic
Level # 3 - Type of particle (Char Classification): whole particle identification:	Mineroid

Inorganics

Origin	Medium rank coal
Level # 1 - Nature: whole particle identification:	Inorganic
Level # 2 - Composition (Metallic/Non-Metallic)	Non-Metallic
Level # 3 - Type of particle (Char Classification): whole particle identification:	Mineroid

Inorganics

Origin	Medium rank coal
Level # 1 - Nature: whole particle identification:	Inorganic
Level # 2 - Composition (Metallic/Non-Metallic)	Non-Metallic
Level # 3 - Type of particle (Char Classification): whole particle identification:	Mineroid

Origin	Medium rank coal
Level # 1 - Nature: whole particle identification:	Inorganic
Level # 2 - Composition (Metallic/Non-Metallic)	Metallic
Level # 3 - Type of particle (Char Classification): whole particle identification:	Mineroid

Origin	Medium rank coal
Level # 1 - Nature: whole particle identification:	Inorganic
Level # 2 - Composition (Metallic/Non-Metallic)	Non-Metallic
Level # 3 - Type of particle (Char Classification): whole particle identification:	Mineroid

Origin	Medium rank coal
Level # 1 - Nature: whole particle identification:	Inorganic
Level # 2 - Composition (Metallic/Non-Metallic)	Non-Metallic
Level # 3 - Type of particle (Char Classification): whole particle identification:	Mineroid

Inorganics

Origin	Medium rank coal
Level # 1 - Nature: whole particle identification:	Inorganic
Level # 2 - Composition (Metallic/Non-Metallic)	Non-Metallic
Level # 3 - Type of particle (Char Classification): whole particle identification:	Mineroid

Inorganics

Origin	Medium rank coal
Level # 1 - Nature: whole particle identification:	Inorganic
Level # 2 - Composition (Metallic/Non-Metallic)	Non-Metallic
Level # 3 - Type of particle (Char Classification): whole particle identification:	Mineroid

Origin	Medium rank coal
Level # 1 - Nature: whole particle identification:	Inorganic
Level # 2 - Composition (Metallic/Non-Metallic)	Metallic
Level # 3 - Type of particle (Char Classification): whole particle identification:	Mineroid

Origin	Medium rank coal
Level # 1 - Nature: whole particle identification:	Inorganic
Level # 2 - Composition (Metallic/Non-Metallic)	Metallic
Level # 3 - Type of particle (Char Classification): whole particle identification:	Mineroid

Origin	Medium rank coal
Level # 1 - Nature: whole particle identification:	Inorganic
Level # 2 - Composition (Metallic/Non-Metallic)	Non-Metallic
Level # 3 - Type of particle (Char Classification): whole particle identification:	Mineroid

Origin	Medium rank coal
Level # 1 - Nature: whole particle identification:	Inorganic
Level # 2 - Composition (Metallic/Non-Metallic)	Non-Metallic
Level # 3 - Type of particle (Char Classification): whole particle identification:	Mineroid

Inorganics

Origin	Medium rank coal
Level # 1 - Nature: whole particle identification:	Inorganic
Level # 2 - Composition (Metallic/Non-Metallic)	Non-Metallic
Level # 3 - Type of particle (Char Classification): whole particle identification:	Mineroid

Origin	Medium rank coal
Level # 1 - Nature: whole particle identification:	Inorganic
Level # 2 - Composition (Metallic/Non-Metallic)	Non-Metallic
Level # 3 - Type of particle (Char Classification): whole particle identification:	Mineroid

Inorganics

Origin	Medium rank coal
Level # 1 - Nature: whole particle identification:	Inorganic
Level # 2 - Composition (Metallic/Non-Metallic)	Non-Metallic
Level # 3 - Type of particle (Char Classification): whole particle identification:	Mineroid

Origin	Medium rank coal
Level # 1 - Nature: whole particle identification:	Inorganic
Level # 2 - Composition (Metallic/Non-Metallic)	Non-Metallic
Level # 3 - Type of particle (Char Classification): whole particle identification:	Mineroid

Origin	Medium rank coal
Level # 1 - Nature: whole particle identification:	Inorganic
Level # 2 - Composition (Metallic/Non-Metallic)	Metallic
Level # 3 - Type of particle (Char Classification): whole particle identification:	Mineroid

Inorganics

Origin	Medium rank coal
Level # 1 - Nature: whole particle identification:	Inorganic
Level # 2 - Composition (Metallic/Non-Metallic)	Non-Metallic
Level # 3 - Type of particle (Char Classification): whole particle identification:	Mineroid

Fluidised Bed Combustion Fly Ash BIOMASS (sewage sludge + wood pellets)

Inorganics

Lovel # 2 Type of particle (Char Classification): whole particle identification:	
LEVEL# 5 - IVDE ULDALILLE ICHAL CIASSIILALIUII. WIIDE DALILLE ILEILIILALIUI.	

Long side of the pictures: 200 microns

Mineroid

Fluidised Bed Combustion Fly Ash BIOMASS (sewage sludge + wood pellets)

Inorganics

Level # 1 - Nature: whole particle identification:	Inorganic
Level # 2 - Composition (Metallic/Non-Metallic)	Metallic
Level # 3 - Type of particle (Char Classification): whole particle identification:	Mineroid

Fluidised Bed Combustion Fly Ash BIOMASS (sewage sludge + wood pellets)

Inorganics

Level #1 - Nature: whole particle identification:	Inorganic
Level # 2 - Composition (Metallic/Non-Metallic)	Metallic
Level # 3 - Type of particle (Char Classification): whole particle identification:	Mineroid

Long side of the pictures: 200 microns

PgUp

Fluidised Bed Combustion Fly Ash COAL TAILINGS + BIOMASS (wood pellets)

Inorganics

Level # 1 - Nature: whole particle identification:	Inorganic
Level # 2 - Composition (Metallic/Non-Metallic)	Non-Metallic
Level # 3 - Type of particle (Char Classification): whole particle identificatio	n: Mineroid

Fluidised Bed Combustion Fly Ash COAL TAILINGS + BIOMASS (wood pellets)

Inorganics

Level # 1 - Nature: <u>whole particle identification</u> :	Inorganic
Level # 2 - Composition (Metallic/Non-Metallic)	Metallic
Level # 3 - Type of particle (Char Classification): whole particle identification:	Mineroid

Long side of the pictures: 200 microns

443

Fluidised Bed Combustion Fly Ash COAL TAILINGS + BIOMASS (wood pellets)

Inorganics

Level # 1 - Nature: whole particle identification:	Inorganic
Level # 2 - Composition (Metallic/Non-Metallic)	Metallic
Level # 3 - Type of particle (Char Classification): whole particle identification:	Mineroid

Inorganics

Level # 1 - Nature: whole particle identification:	Inorganic
Level # 2 - Composition (Metallic/Non-Metallic)	Non-Metallic
Level # 3 - Type of particle (Char Classification): whole particle identification:	Mineroid

Inorganics

Level # 1 - Nature: whole particle identification:	Inorganic
Level # 2 - Composition (Metallic/Non-Metallic)	Non-Metallic
Level # 3 - Type of particle (Char Classification): whole particle identification:	Mineroid

Inorganics

Level # 1 - Nature: whole particle identification:	Inorganic
Level # 2 - Composition (Metallic/Non-Metallic)	Non-Metallic
Level # 3 - Type of particle (Char Classification): whole particle identification:	Mineroid

Inorganics

Level # 1 - Nature: whole particle identification:	Inorganic
Level # 2 - Composition (Metallic/Non-Metallic)	Metallic
Level # 3 - Type of particle (Char Classification): whole particle identification:	Mineroid

Inorganics

Level # 1 - Nature: whole particle identification:	Inorganic
Level # 2 - Composition (Metallic/Non-Metallic)	Non-Metallic
Level # 3 - Type of particle (Char Classification): whole particle identification:	Mineroid

Inorganics

Level # 1 - Nature: whole particle identification:	Inorganic
Level # 2 - Composition (Metallic/Non-Metallic)	Non-Metallic
Level # 3 - Type of particle (Char Classification): whole particle identification:	Mineroid

Inorganics

Level # 1 - Nature: whole particle identification:	Inorganic
Level # 2 - Composition (Metallic/Non-Metallic)	Non-Metallic
Level # 3 - Type of particle (Char Classification): whole particle identification:	Mineroid

Inorganics

Level # 1 - Nature: whole particle identification:	Inorganic
Level # 2 - Composition (Metallic/Non-Metallic)	Non-Metallic
Level # 3 - Type of particle (Char Classification): whole particle identification:	Mineroid

Inorganics

Level # 1 - Nature: whole particle identification:	Inorganic
Level # 2 - Composition (Metallic/Non-Metallic)	Non-Metallic
Level # 3 - Type of particle (Char Classification): whole particle identification:	Mineroid

Inorganics

Level # 1 - Nature: whole particle identification:	Inorganic
Level # 2 - Composition (Metallic/Non-Metallic)	Non-Metallic
Level # 3 - Type of particle (Char Classification): whole particle identification:	Mineroid

Inorganics

Level # 1 - Nature: whole particle identification:	Inorganic
Level # 2 - Composition (Metallic/Non-Metallic)	Non-Metallic
Level # 3 - Type of particle (Char Classification): whole particle identification:	Mineroid

Long side of the pictures: 200 microns

PgUp ┥ ▶ PgDn 184

Inorganics

Level # 1 - Nature: whole particle identification:	Inorganic
Level # 2 - Composition (Metallic/Non-Metallic)	Metallic
Level # 3 - Type of particle (Char Classification): whole particle identification:	Mineroid

Inorganics

Level # 1 - Nature: whole particle identification:	Inorganic
Level # 2 - Composition (Metallic/Non-Metallic)	Non-Metallic
Level # 3 - Type of particle (Char Classification): whole particle identification:	Mineroid

Inorganics

Level # 1 - Nature: whole particle identification:	Inorganic
Level # 2 - Composition (Metallic/Non-Metallic)	Non-Metallic
Level # 3 - Type of particle (Char Classification): whole particle identification:	Mineroid

Inorganics

Level # 1 - Nature: whole particle identification:	Inorganic
Level # 2 - Composition (Metallic/Non-Metallic)	Non-Metallic
Level # 3 - Type of particle (Char Classification): whole particle identification:	Mineroid

Inorganics

Level # 1 - Nature: whole particle identification:	Inorganic
Level # 2 - Composition (Metallic/Non-Metallic)	Non-Metallic
Level # 3 - Type of particle (Char Classification): whole particle identification:	Mineroid

Inorganics

Level # 1 - Nature: whole particle identification:	Inorganic
Level # 2 - Composition (Metallic/Non-Metallic)	Metallic
Level # 3 - Type of particle (Char Classification): whole particle identification:	Mineroid

Inorganics

Level # 1 - Nature: whole particle identification:	Inorganic
Level # 2 - Composition (Metallic/Non-Metallic)	Non-Metallic
Level # 3 - Type of particle (Char Classification): whole particle identification:	Mineroid

Inorganics

Level # 1 - Nature: whole particle identification:	Inorganic
Level # 2 - Composition (Metallic/Non-Metallic)	Non-Metallic
Level # 3 - Type of particle (Char Classification): whole particle identification:	Mineroid

480

Fluidised Bed Combustion Fly Ash FOREST BIOMASS (Eucalyptus)

Inorganics

Level # 1 - Nature: whole particle identification:	Inorganic
Level # 2 - Composition (Metallic/Non-Metallic)	Metallic
Level # 3 - Type of particle (Char Classification): whole particle identification:	Mineroid

Inorganics

Level # 1 - Nature: whole particle identification:	Inorganic
Level # 2 - Composition (Metallic/Non-Metallic)	Non-Metallic
Level # 3 - Type of particle (Char Classification): whole particle identification:	Mineroid

Long side of the pictures: 200 microns

PgUp ┥ ┝ PgDn 194

Inorganics

Level # 1 - Nature: whole particle identification:	Inorganic
Level # 2 - Composition (Metallic/Non-Metallic)	Non-Metallic
Level # 3 - Type of particle (Char Classification): whole particle identification:	Mineroid

Inorganics

Level # 1 - Nature: whole particle identification:	Inorganic
Level # 2 - Composition (Metallic/Non-Metallic)	Non-Metallic
Level # 3 - Type of particle (Char Classification): whole particle identification:	Mineroid

Inorganics

Level # 1 - Nature: whole particle identification:	Inorganic
Level # 2 - Composition (Metallic/Non-Metallic)	Non-Metallic
Level # 3 - Type of particle (Char Classification): whole particle identification:	Mineroid

Inorganics

Level # 1 - Nature: whole particle identification:	Inorganic
Level # 2 - Composition (Metallic/Non-Metallic)	Non-Metallic
Level # 3 - Type of particle (Char Classification): whole particle identification:	Mineroid

Inorganics

Level # 1 - Nature: whole particle identification:	Inorganic
Level # 2 - Composition (Metallic/Non-Metallic)	Non-Metallic
Level # 3 - Type of particle (Char Classification): whole particle identification:	Mineroid

Long side of the pictures: 200 microns

PgUp ┥ ┝ PgDn 199

Bibliographic references (on fly ash and related products): A to G

Adriano et al., 1980. Utilisation and disposal of fly ash and other coal residues in terrestrial ecosystems: a review. J. Env. Quality 3(9), 333-344.

ASTM, 1999. C618-99: Standard specification for coal fly ash and raw or calcined natural pozzolan for use as a mineral admixture in concrete. American Society for Testing and Materials, Philadelphia, USA, 4pp.

ASTM, 2006. C 618-05: Standard Specification for Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete. American Society for Testing and Materials. Philadelphia, USA. 2pp.

Bailey et al., 1990. A char morphology system with applications to coal combustion. Fuel 69, 225-239.

Ban et al., 1995. Electrostatic separation of powdered materials: beneficiation of coal and fly ash. Energeia 6/4, 1-3.

Ban et al., 1997. Dry triboelectrostatic beneficiation of fly ash. Fuel 76, 801-805.

Bengtsson, M., 1986. Combustion behavior for a range of coals of various origins and petrographic composition. PhD dissertation, Stockholm, Sweden, The Royal Institute of Technology, variously paginated.

Bengtsson, M., 1987. Combustion behaviour for a coal containing a high proportion of pseudovitrinite. Fuel Process. Technol. 15, 201-212.

Bhangare et al., 2011. Distribution of trace elements in coal and combustion residues from five thermal power plants in India. Int. J. Coal Geol. 86, 349-356.

Brownfield, M.E., 2002. Characterization and modes of occurrence of elements in feed coal and fly ash—an integrated approach: U.S. Geological Survey, Fact Sheet 038-02, 4 p. (http://greenwood.cr.usgs.gov/pub/fact-sheets/fs-0038-02/).

Buhre et al., 2005. Submicron ash formation from coal combustion. Fuel 84, 1206-1214. **Buhre** et al., 2006. Fine ash formation during combustion of pulverized coal: coal property impacts. Fuel 85, 185-193.

Carlson, C.L., **Adriano**, D.C., 1993. Environmental impacts of coal combustion residues. J. Env. Quality 22, 227-247.

Cox, M., **Nugteren**, H., **Janssen-Jurkovicová**, M., (Eds.)., 2008. Combustion Residues. Current, novel and renewable applications. John Wiley & Sons, Ltd.430pp.

Crowley et al., 1996. Characterization of Cr, Ni, and Co in fly ash from a coal-burning power plant in Kentucky (abstract). TSOP Abstracts and Program, v. 13, 29-31.

Dai et al., 2010. Abundances and distribution of minerals and elements in high-alumina coal fly ash from the Jungar power plant, Inner Mongolia, China. Int. J. Coal Geol. 81, 320-332.

Depoi et al., 2008. Chemical characterization of feed coals and combustion-by-products from Brazilian power plants. Int. J. Coal Geol. 76, 227-236.

Dunham et al., 2003. Fixed-bed studies of the interactions between mercury and coal combustion fly ash. Fuel Proc.Technol. 82, 197-213.

Elswick et al., 2007. Sulfur and carbon isotope geochemistry of coal and derived coalcombustion by-products: An example from an eastern Kentucky mine and power plant. App. Geochem. 22, 2065-2077. **Evangelou**, V.P., 1996. Coal ash chemical properties and potential influence on water quality. In: Session V, Environment: Land and Water. (Vories, K., Joseph, B., Eds.). Coal Combustion By-Products Associated with Coal Mining Interactive Forum, Southern Illinois University, Carbondale, Illinois, Oct. 29-32, 1996, 119-135. http://www.mcrcc.osmre.gov/PDF/Forums/CCB3/ CCB3%20COVER.pdf

Everson et al., 2008. Properties of high ash char particles derived from inertinite-rich coal: 1. Chemical, structural and petrographic characteristics. Fuel 87, 3082-3090.

Falcone, S.K., Schobert, H.H., 1986. Mineral transformations during ashing of selected low-rank coals. In: Mineral Matter and Ash in Coal. (Vorres, K.S., Ed.), American Chemical Society, Washington, DC, 114-127.

Filippidis et al., 1996. Mineralogical components of some thermally decomposed lignite and lignite ash from the Ptolemais Basin, Greece. Int. J. Coal Geol. 30, 303-314.

Foner et al., 1999. Characterization of fly ash from Israel with reference to its possible utilization. Fuel 78, 215-223.

French et al., 2001. Characterization of mineral transformations in pulverized fuel combustion by dynamic high-temperature X-ray diffraction analyzer. Proceedings of 18th Pittsburgh Int. Coal Conf., Newcastle, Australia, December, 2001 (CD-Rom), 7 pp.

Gentzis, T., Chambers, A., 1993. A microscopic study of the combustion residues of subbituminous and bituminous coals from Alberta, Canada. Int. J. Coal Geol. Geology 24, 245-257.

Girón et al., 2012. Fly ash from the combustion of forest biomass (Eucalyptus globulus bark): Composition and physicochemical properties. Energy Fuels 26/ 3, 1540-1556.

Girón et al., 2013. Properties of fly ash from forest biomass combustion. Fuel 114, 71-77.

Goodarzi, F., 2005, Petrology of subbituminous feed coal as a guide to the capture of mercury by fly ash—influence of depositional environment. Int. J. Coal Geol. 61, 1-12.

Goodarzi, F., 2006. Morphology and chemistry of fine particles emitted from a Canadian coal-fired power plant. Fuel 85, 273-280.

Goodarzi, F., Hower, J., 2007. Classification of carbon in Canadian fly ashes. Fuel 48, 1949-1957.

Gottlieb et al., 1992. The characterization of mineral matter in coal and fly-ash. In: Inorganic Transformations and Ash Deposition during Combustion. (Benson, S.A., Ed.), American Society of Mechanical Engineers, New York, 135-145.

Graham et al., 2005. Transmission electron microscopy study of the sites of mercury, selenium, and arsenic in a Kentucky fly ash. Proceedings of 22nd Pittsburgh Int. Coal Conf., Pittsburgh, PA, 12-15 September 2005.

Grasby et al., 2011. Catastrophic dispersion of coal fly ash into oceans during the latest Permian extinction. Nature Geoscience 4, 104-107.

Guedes et al., 2008. Characterization of fly ash from a power plant and surroundings by micro-Raman spectroscopy. Int. J. Coal Geol. 73, 359-370.

PgDn To next bibliography slide 200

Bibliographic references (continuation): H to K

Hassett, D.J., Eylands, K.E., 1999. Mercury capture on coal combustion fly ash. Fuel 78, 243-248.

Hill et al., 1997. An examination of fly ash carbon and its interactions with air entraining agents. Cement and Concrete Research 27, 193-204.

Hill et al., 1998. Investigation of fly ash carbon by thermal analysis and optical microscopy. Cement and Concrete Research 28, 1479-1488.

Hoffman, G.K., 2000. Use of fly ash from New Mexico coals (abstract). AAPG Bulletin 84, p. 1240.

Hower et al., 1993. Characterization of Kentucky coal-combustion by-products: compositional variations based on sulfur content of feed coal. J. Coal Quality 12, 150-155.

Hower et al., 1995. Approaches to the petrographic characterization of fly ash. Proceedings of 11th Int. Coal Testing Conf., Lexington, KY, May 10-12, 49-54.

Hower et al., 1996. Petrography and chemistry of high-carbon fly ash from the Shawnee Power Station, Kentucky. Energy Sources 18, 107-118.

Hower et al., 1996. Case studies of the impact of conversion to low-NOx combustion on fly ash petrology and mineralogy: Proceedings of 7th Australian Coal Science Conf., Dec. 2-4, Gippsland, Victoria, Australia, 347-354.

Hower et al., 1996. Characterization of fly ash from Kentucky power plants. Fuel 75, 403-411.

Hower et al., 1997. Case study of the conversion of tangential- and wall-fired units to low-NOx combustion: Impact on fly ash quality. Waste Management 17, 219-229.

Hower et al., 1999. Impact of the Conversion to Low-NOx Combustion on Ash Characteristics in a Utility Boiler Burning Western US Coal. Fuel Proc. Technol. 61, 175-195.

Hower et al., 1999. Characterization of fly ash from low-sulfur and high sulfur coal sources: partitioning of carbon and trace elements with particle size. Energy Sources 21, 511–525.

Hower et al., 1999. Changes in the quality of coal combustion by-products produced by Kentucky power plants, 1978 to 1997: Consequences of clean air act directives. Fuel 78, 701-712.

Hower et al., 1999. Petrology, mineralogy and chemistry of magnetically-separated sized fly ash. Fuel 78, 197-203.

Hower et al., 2000. Mercury capture by distinct fly ash carbon forms. Energy Fuels 14, 224-226.

Hower et al., 2000. Intra- and inter-unit variation in fly ash petrography and mercury adsorption: examples from a Western Kentucky power station. Energy Fuels 14, 212–216.

Hower, J.C., **Mastalerz**, M., 2001. An approach toward a combined scheme for the petrographic classification of fly ash. Energy Fuels 15, 1319-1321.

Hower et al., 2001. Temporal and spatial variations in fly ash quality. Fuel Proc. Technol. 73, 37-58.

Hower et al., 2001. Petrology and minor element chemistry of combustion by-products from the co-combustion of coal, tire-derived fuel, and petroleum coke at a western Kentucky cyclone-fired unit. Fuel Proc.Technol. 74, 125-142.

Hower, J.C., **Robertson**, J.D., 2004. Chemistry and petrology of fly ash derived from the co-combustion of western United States coal and tire-derived fuel. Fuel Proc. Technol. 85, 359-377.

Hower et al., 2005. Impact of co-combustion of petroleum coke and coal on fly ash quality: case study of a western Kentucky power plant. App. Geochemistry 20, 1309-1319.

Hower et al., 2005. Characteristics of coal utilization products (CCBs) from Kentucky power plants, with emphasis on mercury content. Fuel 84, 1338-1350.

Hower et al., 2005. An approach toward a combined scheme for the petrographic classification of fly ash: Revision and clarification. Energy Fuels 19, 653-655.

Huffman et al., 1981. Investigation of the high temperature behaviour of coal ash in reducing and oxidizing atmospheres. Fuel 60, 585-597.

Ilgner, H.J., 2000. The benefits of ashfilling in South African coal mines. In: Coal – the Future. 12th Int. Conf. Coal Research, South African Institute of Mining and Metallurgy, Johannesburg (Symposium Series S26), 279-288.

International Organization for Standardization, (ISO), 1985. Methods for the Petrographic Analysis of Bituminous Coal and Anthracite – Part 2: Methods for Preparing Coal Samples. ISO 7404-2. Geneva, Switzerland, 8 pp.

International Organization for Standardization, (ISO), 2005. Classification of coals. ISO 11760:2005(E), 1st edition, Geneva, Switzerland, 9 pp.

lordanidis et al., 2008. Fly ash-airborne particles from Ptolemais-Kozani area, northern Greece, as determined by ESEM-EDX. Int. J. Coal Geol. 73, 63-73.

Izquierdo, M., **Querol**, X., 2012. Leaching behavior of elements from coal combustion fly ash: An overview: International Int. J. Coal Geol. 94, 54-66.

Izquierdo et al., 2013. Measuring reactive pools of Cd, Pb and Zn in coal fly ash from the UK using isotopic dilution assays. App. Geochem. 33, 41-49.

Jankowski et al., 2006. Mobility of trace elements from selected Australian fly ashes and its potential impact on aquatic ecosystems. Fuel 85, 243-256.

Jiang et al., 2008. Progression in sulfur isotopic compositions from coal to fly ash: Examples from single-source combustion in Indiana. Int. J. Coal Geol. 73, 273-284.

Jones et al., 2012. Leaching of elements from bottom ash, economizer fly ash, and fly ash from two coal-fired power plants. Int. J. Coal Geol. 94, 337-348.

Karayigit et al., 2001. Mineralogy and geochemistry of feed coals and their combustion residues from the Cayirhan power plant, Ankara, Turkey. App. Geochem. 16, 911-919. **Kostova** et al., 2011. Mercury capture by selected Bulgarian fly ashes: influence of coal rank and fly ash carbon pore structure on capture efficiency. App. Geochem. 26, 18-27.

Kutschko, B., Kim, A.G., 2006. Fly ash characterization by SEM–EDS. Fuel 85, 2537-2544.

PgDn To next bibliography slide 201

Bibliographic references (continuation): L to S

Lee, G.K., Whaley, H., 1983. Modification of combustion and fly-ash characteristics by coal blending. J. Inst. Energy 56, 190-197.

Lee et al., 2006. Speciation and mass distribution of mercury in a bituminous coal-fired power plant. Atmosph. Environ. 40, 2215-2224.

Lester et al., 2000. Atlas of Char Occurrences of the Combustion Working Group-ICCP. CDrom.

Lester et al., 2010. The procedure used to develop a coal char classification— Commission III Combustion Working Group of the International Committee for Coal and Organic Petrology. Int. J. Coal Geol. 81/4, 333-342.

Levandowski, J., Kalkreuth, W., 2009. Chemical and petrographical characterization of feed coal, fly ash and bottom ash from the Figueira power plant, Paraná, Brazil. Int. J. Coal Geol. 77, 269-281.

Li et al., 2005. Partitioning behaviour of trace elements in a stoker-fired combustion unit: An example using bituminous coals from the Greymouth coalfield (Cretaceous), New Zealand. Int. J. Coal Geol. 63, 98-116.

Liu et al., 2004. Petrological and mineralogical characterizations and chemical composition of coal ashes from power plants in Yanzhou mining district, China. Fuel Proc. Technol. 85, 1635-1646.

Liu et al., 2006. Research on formation and emission of inhalant particulate matters at different oxygen content during coal combustion. Zhongguo Dianji Gongcheng Xuebao/Proceedings of the Chinese Society of Electrical Engineering 26 /15, 46-50.

López-Antón et al., 2009. The influence of carbon particle type in fly ashes on mercury adsorption. Fuel 88, 1194-1200.

Mardon, S.M., **Hower**, J.C., 2004. Impact of coal properties on coal combustion byproduct quality: examples from a Kentucky power plant. Int. J. Coal Geol. 59, 153-169.

Maroto-Valer et al., 1999. Novel separation of the differing forms of unburned carbon present in fly ash using density gradient centrifugation. Energy Fuels 13, 947-953.

Maroto-Valer et al., Characterization of the carbon types present in fly ash separated by density gradient centrifugation. Fuel 80, 795-800.

Mastalerz et al., 2004. From in-situ coal to fly ash: a study of coal mines and power plants from Indiana. Int. J. Coal Geol. 59, 171-192.

Mittra et al., 2005. Fly ash – a potential source of soil amendment and a component of integrated plant nutrient supply system. Fuel 84, 1447-1451.

Moreno et al., 2005. Physico-chemical characteristics of European pulverized coal combustion fly ashes. Fuel 84, 1351-1363.

Murarka, I., 2001. A case study of the use of coal fly ash for reclaiming a surface coal pit. Proceedings of 18th Pittsburgh Int. Coal Conf., Newcastle, Australia, 30 pp. (CD- Rom Publication).

Nandi et al., 1977. Inert coal macerals in combustion. Fuel 56, 125-130.

Nandi, B., 1984. Combustion characteristics of inert macerals of Gondwana coals. Comunicações Serviços Geologicos de Portugal 70, 319.

Pfughoeft-Hassett et al., 2000. Production of coal combustion by-products: Processes, volumes, and variability: Proceedings, Use and Disposal of Coal Combustion By Products at Coal Mines, Morgantown, WV, April 11–13, 2000, 7-15.

Querol et al., 2002. Synthesis of zeolites from coal fly ash: an overview. Int. J. Coal Geol. 50, 413–423.

Raask, E., 1985. Mineral Impurities in Coal Combustion: behavior problems and remedial measures. Hemisphere Publishing Corporation, New York, 484 pp.

Reifenstein et al., 1999. Behaviour of selected minerals in an improved ash fusion test: quartz, potassium feldspar, sodium feldspar, kaolinite, illite, calcite, dolomite, siderite, pyrite and apatite. Fuel 78, 1449-1461.

Ribeiro et al., 2011. Comprehensive characterization of anthracite fly ash from a thermoelectric power plant and its potential environmental impact. Int. J. Coal Geol. 86, 204-212.

Rosenberg et al., 1996. Combustion char morphology related to combustion temperature and coal petrography. Fuel 75, 1071-1082.

Ruppel, T.C., Sarkus, T.A., 1998. Unburned carbon on fly ash: a burning issue for coalfired utilities. Energeia 9/1, 5-6.

Sakulpitakphon et al., 2000. Mercury capture by fly ash: study of the combustion of a high-mercury coal at a utility boiler. Energy Fuels 14, 727-733.

Sakulpitakphon et al., 2003. Arsenic and mercury partitioning in fly ash at a Kentucky power plant. Energy Fuels 17, 1028-1033.

Sanei et al., elements in recent lake sediments from central Alberta, Canada: an assessment of the regional impact of coal-fired power plants. Int. J. Coal Geol. 82, 105-115.

Sear et al., 2003. The environmental impacts of using fly ash-The UK producers? perspective: 2003 International Ash Utilization Symposium, Center for Applied Energy Research, University of Kentucky, Lexington, KY. Paper No 20, 14 pp. http://www.flyash.info/2003/20sear.pdf.

Seggiani, M., 1999. Empirical correlations of the ash flow temperatures and temperature of critical viscosity for coal and biomass ashes. Fuel 78, 1121-1125.

Senior et al., 2004. Characterization of fly ash from full-scale demonstration of sorbent injection for mercury control on coal-fired power plants. Fuel Proc. Technol. 85, 601-612.

Sheps-Pelleg et al., 2001. Occurrence of hexavalent chromium in Israeli fly ash and its leaching behavior, 2001, Proceedings of the 11th Int. Conf. .Coal Sci.. CD-Rom 4 p.

Shibaoka, M., 1985. Microscopic investigation of unburnt char in fly ash. Fuel 64, 263-269.

Spears, D.A., 2004. The use of laser ablation inductively coupled plasma-mass spectrometry (LA ICP-MS) for the analysis of fly ash. Fuel 83, 1765-1770.

Suárez-Ruiz et al., 2006. Petrology and chemistry of fly ashes derived from the combustion of complex coal blends in Spanish power plants. AshTech Conf.. CD-Rom. Birmingham, UK. 15-17 May.

Suárez-Ruiz et al., 2007. Hg and Se capture and fly ash carbons from combustion of complex pulverized feed blends mainly of anthracitic coal rank in Spanish power plants. Energy Fuels 21, 59-70.

PgDn To next bibliography slide 202

Bibliographic references (continuation): S to Z

Suárez-Ruiz, I., Parra, J.B., 2007. Relationship between the textural properties, fly ash carbons and Hg capture in fly ashes derived from the combustion of anthracitic pulverized feed blends. Energy Fuels 21, 1915-1923.

Suárez-Ruiz, I., Valentim, B., 2007. Fly ash components: A proposal for their identification and classification, Proceedings of World of Coal Ash Symp., Covington, Kentucky, 7–10 May 2007, (CD publication). 8 pp.

Suárez-Ruiz, I., Ward, C.R., 2008. Coal combustion. In: Applied Coal petrology: The role of petrology in coal utilization (Suárez-Ruiz, I., Crelling, J.C., Eds.). Elsevier, Chapter 4, 85-116.

Suárez-Ruiz et al., 2008a. Towards an ICCP classification of Fly Ash components. Preliminary results. TSOP Newsletter 25/3, 10-13, USA.(<u>www.tsop.org</u>).

Suárez-Ruiz et al., 2008b. Towards an ICCP classification of Fly Ash components. International Conference of Coal and Organic Petrology.ICCP-TSOP Joint Meeting. CDrom. Program and Abstracts (I. Suárez-Ruiz, Ed.), 139-140.

Suárez-Ruiz et al., 2014. Petrographic Classification of Fly Ash Components. The Society for Organic Petrology Newsletter 31 (4), 16-17.

Sushil S., **Batra**, V.S., 2006. Analysis of fly ash heavy metal content and disposal in three thermal power plants in India. Fuel 85, 2676-2679.

Swanepoel, G.C., **Strydom**, C.A., 2002. Utilisation of fly ash in a geopolymeric material. App. Geochem. 17, 1143–1148.

Swanson et al., 2013. Partitioning of selected trace elements in coal combustion products from two coal-burning power plants in the United States. Int. J. Coal Geol. 113, 116-126.

Thy et al., 2006. High temperature elemental losses and mineralogical changes in common biomass ashes. Fuel 85, 783-795.

Valentim, B., Hower, J.C., 2010. Influence of feed and sampling systems on element partitioning in Kentucky fly ash. Int. J. Coal Geol. 82, 94-104.

Vassilev, S.V., Menendez, R., 2005. Phase-mineral and chemical composition of coal fly ashes as a basis for their multicomponent utilization. 4. Characterization of heavy concentrates and improved fly ash residues. Fuel 84, 973-991.

Vassilev et al., 2005. Phase-mineral and chemical composition of feed coals, bottom ashes and fly ashes at the Soma power station, Turkey. Int. J. Coal Geol. 61, 35-63.

Vassilev et al., 2005. Phase-mineral and chemical composition of fractions separated from composite fly ashes at the Soma power station, Turkey. Int. J. Coal Geol. 61, 65-85. **Vories**, K.C., 2001. Coal mining and reclamation in the USA with coal combustion by-products: and overview. Proceedings of 19th Pittsburgh Int. Coal Conf., Newcastle, Australia, 15 pp. (CD-Rom Publication).

Vories, K.C., 2004. The beneficial use of coal combustion by-products (CCBs) at SMCRA-regulated coal mines. Energeia 15/5, 1-3.

Ward, C.R., French, D., 2006. Determination of glass content and estimation of glass composition in fly ash using quantitative X-ray diffractometry. Fuel 85, 2268–2277.

Ward et al., 2006. Fly ash – waste or resource? Proceedings of 36th Symposium on Advances in the Study of the Sydney Basin. (Hutton, A., Griffin, J., Eds.). School of Earth and Environmental Sciences, University of Wollongong, Australia, 125-132.

Ward et al., 2009. Element mobility from fresh and long-stored acidic fly ashes associated with an Australian power station. Int. J. Coal Geol. 80, 224-236.

Wyszomirski, P., Brylska, E., 1996. Fly ash in Polish building ceramics — threat or proecology?. App. Geochem. 11, 351-353.

Xie et al., 2006. Heavy coal combustion as the dominant source of particulate pollution in Taiyuan, China, corroborated by high concentrations of arsenic and selenium in PM10. Sci. Total Environ. 370, 409-415.

Yan et al., 2002. A mathematical model of ash formation during pulverised coal combustion. Fuel 81, 337-344.

Yossifova et al., 2007. Mineralogy and environmental geochemistry of lagooned ashes resulted from combustion of Maritza East lignite, Bulgaria. Int. J. Coal Geol. 71, 287-302.

Yunusa et al., 2006. Fly-ash: An exploitable resource for management of Australian agricultural soils. Fuel 85, 2337–2344.

Zielinski, R.A., **Finkelman**, R.B., 1997. Radioactive Elements in Coal and Fly Ash: Abundance, Forms, and Environmental Significance. USGS Fact Sheet FS-163-97.

Zyryanov et al., 2011. Characterization of spinel and magnetospheres of coal fly ashes collected in power plants in the former USSR. Fuel 90, 486-492.

Referencing this ATLAS:

PgUp

Suárez-Ruiz, I., Valentim, B., Borrego, A.G., Bouzinos, A., Flores, D., Kalaitzidis, S., Malinconico, M.L., Marques, M., Misz-Kenan, M., Predeanu, G., Montes, J.R., Rodrigues, S., Savalas, G., Wagner, N., 2015. Petrographic Classification of Fly Ash Components. International Committee for Coal and Organic Petrology (ICCP; <u>www.iccop.org</u>). Open file (<u>www.iccop.org</u>) ISBN: 978-84-608-1416-0

203 pp.

