Standardization of Fluorescence Measurement WG
July 20, 2025 | Filled under Com II |
|
established 2015
Conveners
Former Conveners
Richárd Orbán, Maria Ángeles Gómez Borrego, (others, see Historical Activities)
Members
Introduction
The working group on Standardization of Spectral Fluorescence Measurements was established at the 2015 ICCP meeting in Potsdam as the “Correction Function” working group (ICCP News No. 63) with the objective to obtain comparative results among different laboratories in the measurement of the spectral fluorescence properties of sedimentary organic matter.

Fluorescence spectra from sporinite in subbituminous coal from North Dakota, USA
Objectives
The objective of the Standardization of Spectral Fluorescence Measurements working group (WG) is to standardize spectral fluorescence measurements of sedimentary organic matter. Fluorescence microscopy has been applied to the petrology of sedimentary organic matter since 1936 (Schochardt, 1936; cited in Taylor et al., 1998, p. 407) and the measurement of spectral fluorescence by recording emission intensity from 400–750 nm has grown steadily in importance since the 1970s (Jacob, 1965; van Gijzel, 1967, 1975, 1981; Ottenjann et al., 1975; Ting and Lo, 1975; Alpern, 1976; Teichmüller and Ottenjann, 1977; Ottenjann, 1980; Teichmüller, 1982, 1984; Urbanczyk et al., 2014, Sanei et al., 2024; Nielsen et al., 2025; Zielińska et al., 2025). Spectral fluorescence parameters [e.g., λmax; red to green ratio Q] can be used to determine thermal maturity in dispersed organic matter, particularly where vitrinite is rare, absent or ambiguous in presentation (Pradier et al., 1988, 1991; Stasiuk, 1994; Thompson-Rizer and Woods, 1987). To obtain comparative results among different laboratories, a standardized procedure is required (e.g., Araujo et al. 1998, 2014).
Historical Activities
The ICCP has a long history of efforts to standardize the measurement of spectral fluorescence of sedimentary organic matter (Kus and Hackley, 2024). Some important milestones include the following:
- The Fluorescence-Photometry WG was established in 1972, convened by Dr. H. Jacob, and included members Dr. B. Alpern (France), Dr. L.I. Bogoliubova (former U.S.S.R), Dr. M. Correia (France), Dr. P. van Gijzel (The Netherlands), Dr. H.W. Hagemann (former B.R.D.), Dr. W. Homann (former B.R.D.), Somers (Belgium), Dr. L. Soós (Hungary), and Dr. M. Teichmüller (former B.R.D.).
- The Quantitative Fluorescence Microscope-Photometrical Techniques WG was established during the 1979 ICCP Meeting in Urbana (USA) and convened by Dr. P. van Gijzel.
- In 1984, Dr. K. Ottenjann took leadership of fluorescence standardisation efforts within a renamed Standardization of Fluorescence Measurement WG and a questionnaire designed to assess methodology was disseminated.
- Spectral fluorescence measurements were first performed in an ICCP interlaboratory exercise in 1994 by the Thermal Indices WG in Commission II, convened by Dr. B. Pradier (Baranger et al., 1991, Pradier et al., 1998).
- Interlaboratory measurements continued in the Thermal Indices WG using the same calibrated lamps donated to the ICCP by Pradier under Carla Araujo. Exercises were conducted on Alpha torbanite (Araujo et al., 2003), Irati shale, Posidonia shale, Cantabrian shale (Araujo, 2006), and Devonian marine shales from USA (Araujo et al., 2014). The same correction procedure from the calibrated lamps was applied in the interlaboratory exercise conducted in the Concentration of Organic Matter WG convened by Mendonça Filho (Mendonça Filho et al., 2010).
- ICCP efforts to standardize spectral fluorescence measurements were picked up by Dr. Ángeles G. Borrego in 2014, whose work focused on the need for a standard reference material to enable a successful common interlaboratory calibration.
The Standardization of Spectral Fluorescence Measurements WG is open to all professionals interested in standardizing the methodology of spectral fluorescence measurements on microscopic organic particles. Interested parties are encouraged to contact Jolanta Kus (Jolanta.Kus@bgr.de), Paul Hackley (phackley@usgs.gov), or Maria Ángeles Gómez Borrego (angeles@incar.csic.es).
Activities
2015 Activities
- ICCP Meeting, Potsdam – Presentation of summary of activities
- Minutes of Commission II – ICCP News No. 63, p. 26, November 2015
2017 Activities
- ICCP Meeting, Bucharest – Presentation of summary of activities
- Minutes of Commission II – ICCP News No. 69, p. 33, May 2017
2019 Activities
- ICCP Meeting, The Hague – Presentation of summary of activities
- Minutes of Commission II – ICCP News No. 75, p. 13, December 2019
2023 Activities
- ICCP Meeting, Patras – Presentation of summary of activities
- Minutes of Commission II – ICCP News No. 87, p. 20, December 2023
2024 Activities
- ICCP Meeting, Oviedo – Presentation of summary of activities
- Minutes of Commission II – ICCP News No. 90, p. 18-19, December 2024
- Preparation of preliminary test on blank epoxy resins, BAM standard, and ICCP calibration lamp 2B
2025 Activities
- Conduction of preliminary test on blank epoxy resins with BAM standard, and ICCP calibration lamp 2B
References
Alpern, B., 1976. Fluorescence-et reflectance de lamatière organique disperse et evolution des sédiments. Bull. Centre Rech., Pau (SNPA) 10, 201–220.
Araujo, C.V., Vieth-Redemann, A., Pradier, B., Kalkreuth,W., Gomez Borrego, A., Gurba, L., Hagemann, H., Hufnagel, W., Koch, M., Kuili, J., Laggoun-Defarge, F., Lo, H., Newman, J., Spanic, D., Suarez-Ruiz, I., Thompson-Rizer, C., 1998. Interlaboratory exercise on the application of microspectral fluorescence measurements as maturity parameters. Rev. Latinoam. Geoquim. Org. 4, 41–49.
Araujo, C.V., Barbanti, S.M., Condé, V.C., Kalkreuth, W., Macedo, A.C., Newman, J., Pickel, W., Stasiuk, L., Volk, H., 2003. Thermal Indices Working Group — summary of the 2002 round robin exercise. ICCP News 29, 5–12.
Araujo, C.V., 2006. Thermal Indices Working Group – Exercise Year 2005. ICCP News 37, 17–28.
Araujo, C. V., Borrego, A. G., Cardott, B., das Chagas, R. B. A., Flores, D., Gonçalves, P., Hackley, P. C., Hower, J. C., Kern, M. L., Kus, J., Mastalerz, M., Mendonça Filho, J. G., Mendonça, J. O., Menezes, T. R., Newman, J., Suarez-Ruiz, I., da Silva, F. S., de Souza, I. V., 2014. Petrographic maturity parameters of a Devonian shale maturation series, Appalachian Basin, USA. ICCP Thermal Indices Working Group interlaboratory exercise. Int. J. Coal Geol. 130, 89–101.
Baranger, R., Martinez, L., Pittion, J.-l., Pouleau, J., 1991. A new calibration procedure for fluorescence measurements of sedimentary organic matter. Org. Geochem. 17, 467–475.
Jacob, H., 1965. Neue Rrkenntnisse auf dem Gebiet der lumineszenzmikroskopie fossiler Brennstoffe. Fortschr. Geol. Rheinl. 12, 569–588.
Kus, J., Hackley, P.C., 2024. Standardisation efforts in fluorescence spectroscopy. In: Borrego, A.G. (ed.), The 75th ICCP Meeting: A Commemorative Book: Instituto de Ciencia y Tecnología del Carbono, International Committee for Coal and Organic Petrology, Oviedo, Spain, 22–28 September 2024, pp. 99–107.
Mendonça Filho, J.G.; Araujo, C. V.; Borrego, A. G.; Cook, A.; Flores, D.; Hackley, P.; Hower, J.; Kern, M. L.; Kommeren, C.J.; Kus, J.; Mastalerz, M.; Mendonça, J.O.; Menezes, T. R.; Newman, J.; Ranasinghe, P.; Souza, I. V. A. F.; Suarez-Ruiz, I; Ujiié, Y., 2010 Effect of concentration on maturity optical parameters of dispersed organic components. Interlaboratory results of the organic matter concentration working group of the ICCP. Int. J. Coal Geol. 84, 154-165.
Nielsen, S.B., Hagelskjær, A., Sanei, H., 2025. Relationship between vitrinite reflectance, fluoresence red/green quotients, apatite fission tracks and temperature by joint inversion of three wells. Internationals Journal of Coal Geology 104832.
Ottenjann, K., 1980. Spektrale Fluoreszenzmikroskopie von Kohlen und Ölschiefern. Leitz-Mitt. Wiss. Tech. 8, 262–272.
Ottenjann, K., Teichmüller, M., Wolf, M., 1975. Spectral fluorescence measurements of sporinites in reflected light and their applicability for coalification studies. In: Alpern, B. (Ed.), Pétrographie de la matiere organique des sediments. Relations avec la paleotemperature et le potential pétrolier. CNRS, Paris, pp. 49–65.
Pradier, B., Bertrand, P., Martinez, L., Laggoun-Defarge, F., Pittion, J.L., 1988. Microfluoremetry applied to organic diagenesis study. Org. Geochem. 13 (4–6), 1163–1167.
Pradier, B., Bertrand, P., Martinez, L., Laggoun-Defarge, F., Pittion, J.L., 1991. Fluorescence of organic matter and thermal maturity assessment. Org. Geochem. 17 (4), 511–524.
Pradier, B., Vieth-Redemann, A., Araujo, C., Kalkreuth, W., Borrego, A.G., Hagemann, H. Hufnagel, W., Koch, M., Kuili, J., Laggoun-Defarge, F., Newman, J., Petersen, H., Spanic, D., Stasiuk, L., Suárez Ruiz, I., Thompson-Rizer, C., Wang, J., Wilkins R., 1998. ICCP Interlaboratory exercise on the application of microspectralfluorescence measurements as maturity parameter. Latin American Congress on Organic Geochemistry. Margarita Island, Venezuela,18-21 October, 1998.
Sanei, H., Hagelskjær, O., Petersen, H.I., Rudra, A., Nielsen S.B., Lorant, F., Gelin, F., 2024. A complex case of thermal maturity assessment in a terrigenous sedimentary system: The Northwestern Black Sea basin. International Journal of Coal Geology 104496.
Stasiuk, L.D., 1994. Fluorescence properties of Paleozoic oil-prone alginite in relation to hydrocarbon generation, Williston basin, Saskatchewan, Canada. Mar. Pet. Geol. 11 (2), 219–231.
Taylor, G.H., Teichmüller, M., Davis, A., Diessel, C.F.K., Littke, R., Robert, P., 1998. Organic Petrology, Gebruder Borntraeger, Berlin (704 pp.).
Teichmüller, M., 1982. Fluoreszenz von Liptiniten und Vitriniten in Beziehung zu Inkohlungsgrad und Verkokungsverhalten. Geologisches Landesamt Nordhein-Westfalen, Krefeld. 119 pp.
Teichmüller, M., 1984. Fluorescence-microscopical changes of liptinites and vitrinites during coalification and their relationship to bitumen generation and coking behavior. (Translated from German by Neely Bostik) as Fluorescence-microscopical changes of liptinites and vitrinites during coalification and their relationship to bitumen generation and coking behavior. The Society for Organic Petrology Special Publication No. 1 (73 pp.).
Teichmüller, M., Ottenjann, K., 1977. Liptinite und lipoid Stoffe in einem Erdölmutterdestein. Erdöl Kohle 30, 387–398.
Thompson-Rizer, C.L. and Woods, R.A., 1987. Microspectrofluorescence measurements of coals and petroleum source rocks. Int. J. Coal Geol. 7, 85–104.
Ting, F.T.C., Lo, H.B., 1975. Fluorescence characteristics of thermoaltered exinite (sporinites). Fuel 54, 201–204.
Urbanczyk J., Fernandez Casado M.A., Díaz T.E., Heras P, Infante M, Borrego A.G., 2014 Spectral fluorescence variability of pollen and spores from recent peat-forming plants. International Journal of Coal Geology 131, 263-274.
van Gijzel, P., 1967. Autofluorescence of fossil pollen and spores with special reference to age determination and coalification. Leidse. Geol. Meded. 40, 263–317.
van Gijzel, P., 1975. Polychromatic UV-fluorescence microphotometry of fresh and fossil plant substances, with special reference to the location and identification of dispersed organic material in rocks. In: Alpern, B. (Ed.), Pétrographie de la matiere organique des sediments. Relations avec la paleotemperature et le potential pétrolier. CNRS, Paris, pp. 67–91.
van Gijzel, P., 1981. Applications of the geomicrophotometry of kerogen, solid hydrocarbons and crude oils to petroleum exploration. In: Brooks, J. (Ed.), Organic Maturation Studies and Fossil Fuel Exploration. Academic Press, London, pp. 351–377.
Zielińska, M., Kus, J., Mendonça Filho, J.G., Szram, E., Blumenberg, M., Fabianska, M., 2025. Middle Jurassic black shale deposits from the Pieniny Klippen Belt, Western Carpathians: Insights into organic matter composition, thermal maturity, depositional, and palaeoenvironmental variations. International Journal of Coal Geology 104772.